MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catrid Structured version   Visualization version   GIF version

Theorem catrid 16168
Description: Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
catlid.o · = (comp‘𝐶)
catlid.y (𝜑𝑌𝐵)
catlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
catrid (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)

Proof of Theorem catrid
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catlid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
2 catlid.y . . 3 (𝜑𝑌𝐵)
3 simpr 476 . . . . . . . 8 ((∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
43ralimi 2936 . . . . . . 7 (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)
54a1i 11 . . . . . 6 (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
65ss2rabi 3647 . . . . 5 {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)} ⊆ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓}
7 catidcl.b . . . . . . 7 𝐵 = (Base‘𝐶)
8 catidcl.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
9 catlid.o . . . . . . 7 · = (comp‘𝐶)
10 catidcl.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
11 catidcl.i . . . . . . 7 1 = (Id‘𝐶)
12 catidcl.x . . . . . . 7 (𝜑𝑋𝐵)
137, 8, 9, 10, 11, 12cidval 16161 . . . . . 6 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
147, 8, 9, 10, 12catideu 16159 . . . . . . 7 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
15 riotacl2 6524 . . . . . . 7 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
1614, 15syl 17 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
1713, 16eqeltrd 2688 . . . . 5 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)})
186, 17sseldi 3566 . . . 4 (𝜑 → ( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓})
19 oveq2 6557 . . . . . . . 8 (𝑔 = ( 1𝑋) → (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)))
2019eqeq1d 2612 . . . . . . 7 (𝑔 = ( 1𝑋) → ((𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
21202ralbidv 2972 . . . . . 6 (𝑔 = ( 1𝑋) → (∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2221elrab 3331 . . . . 5 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓))
2322simprbi 479 . . . 4 (( 1𝑋) ∈ {𝑔 ∈ (𝑋𝐻𝑋) ∣ ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓} → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
2418, 23syl 17 . . 3 (𝜑 → ∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓)
25 oveq2 6557 . . . . 5 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
26 oveq2 6557 . . . . . . 7 (𝑦 = 𝑌 → (⟨𝑋, 𝑋· 𝑦) = (⟨𝑋, 𝑋· 𝑌))
2726oveqd 6566 . . . . . 6 (𝑦 = 𝑌 → (𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
2827eqeq1d 2612 . . . . 5 (𝑦 = 𝑌 → ((𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
2925, 28raleqbidv 3129 . . . 4 (𝑦 = 𝑌 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
3029rspcv 3278 . . 3 (𝑌𝐵 → (∀𝑦𝐵𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)( 1𝑋)) = 𝑓 → ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓))
312, 24, 30sylc 63 . 2 (𝜑 → ∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓)
32 oveq1 6556 . . . 4 (𝑓 = 𝐹 → (𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)))
33 id 22 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
3432, 33eqeq12d 2625 . . 3 (𝑓 = 𝐹 → ((𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓 ↔ (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹))
3534rspcv 3278 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (∀𝑓 ∈ (𝑋𝐻𝑌)(𝑓(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝑓 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹))
361, 31, 35sylc 63 1 (𝜑 → (𝐹(⟨𝑋, 𝑋· 𝑌)( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  ∃!wreu 2898  {crab 2900  cop 4131  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Idccid 16149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-cat 16152  df-cid 16153
This theorem is referenced by:  oppccatid  16202  sectcan  16238  monsect  16266  invisoinvl  16273  rcaninv  16277  cicref  16284  subccatid  16329  fucidcl  16448  fucrid  16450  invfuc  16457  arwrid  16546  xpccatid  16651  curf2cl  16694  curfuncf  16701  uncfcurf  16702  hofcl  16722  yonedalem3b  16742
  Copyright terms: Public domain W3C validator