MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catideu Structured version   Visualization version   GIF version

Theorem catideu 16159
Description: Each object in a category has a unique identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidex.b 𝐵 = (Base‘𝐶)
catidex.h 𝐻 = (Hom ‘𝐶)
catidex.o · = (comp‘𝐶)
catidex.c (𝜑𝐶 ∈ Cat)
catidex.x (𝜑𝑋𝐵)
Assertion
Ref Expression
catideu (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐵   𝐶,𝑓,𝑔,𝑦   𝜑,𝑔   𝑓,𝑋,𝑔,𝑦   𝑓,𝐻,𝑔,𝑦   · ,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑓)

Proof of Theorem catideu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 catidex.b . . 3 𝐵 = (Base‘𝐶)
2 catidex.h . . 3 𝐻 = (Hom ‘𝐶)
3 catidex.o . . 3 · = (comp‘𝐶)
4 catidex.c . . 3 (𝜑𝐶 ∈ Cat)
5 catidex.x . . 3 (𝜑𝑋𝐵)
61, 2, 3, 4, 5catidex 16158 . 2 (𝜑 → ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
7 oveq1 6556 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦𝐻𝑋) = (𝑋𝐻𝑋))
8 opeq1 4340 . . . . . . . . . . 11 (𝑦 = 𝑋 → ⟨𝑦, 𝑋⟩ = ⟨𝑋, 𝑋⟩)
98oveq1d 6564 . . . . . . . . . 10 (𝑦 = 𝑋 → (⟨𝑦, 𝑋· 𝑋) = (⟨𝑋, 𝑋· 𝑋))
109oveqd 6566 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓))
1110eqeq1d 2612 . . . . . . . 8 (𝑦 = 𝑋 → ((𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ↔ (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓))
127, 11raleqbidv 3129 . . . . . . 7 (𝑦 = 𝑋 → (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓))
13 oveq2 6557 . . . . . . . 8 (𝑦 = 𝑋 → (𝑋𝐻𝑦) = (𝑋𝐻𝑋))
14 oveq2 6557 . . . . . . . . . 10 (𝑦 = 𝑋 → (⟨𝑋, 𝑋· 𝑦) = (⟨𝑋, 𝑋· 𝑋))
1514oveqd 6566 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔))
1615eqeq1d 2612 . . . . . . . 8 (𝑦 = 𝑋 → ((𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓))
1713, 16raleqbidv 3129 . . . . . . 7 (𝑦 = 𝑋 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓))
1812, 17anbi12d 743 . . . . . 6 (𝑦 = 𝑋 → ((∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)))
1918rspcv 3278 . . . . 5 (𝑋𝐵 → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)))
205, 19syl 17 . . . 4 (𝜑 → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)))
2120ralrimivw 2950 . . 3 (𝜑 → ∀𝑔 ∈ (𝑋𝐻𝑋)(∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)))
22 id 22 . . . . . . . 8 ((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓))
2322ad2ant2rl 781 . . . . . . 7 (((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓))
24 oveq2 6557 . . . . . . . . . 10 (𝑓 = → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑔(⟨𝑋, 𝑋· 𝑋)))
25 id 22 . . . . . . . . . 10 (𝑓 = 𝑓 = )
2624, 25eqeq12d 2625 . . . . . . . . 9 (𝑓 = → ((𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ↔ (𝑔(⟨𝑋, 𝑋· 𝑋)) = ))
2726rspcv 3278 . . . . . . . 8 ( ∈ (𝑋𝐻𝑋) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 → (𝑔(⟨𝑋, 𝑋· 𝑋)) = ))
28 oveq1 6556 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓(⟨𝑋, 𝑋· 𝑋)) = (𝑔(⟨𝑋, 𝑋· 𝑋)))
29 id 22 . . . . . . . . . 10 (𝑓 = 𝑔𝑓 = 𝑔)
3028, 29eqeq12d 2625 . . . . . . . . 9 (𝑓 = 𝑔 → ((𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓 ↔ (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔))
3130rspcv 3278 . . . . . . . 8 (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓 → (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔))
3227, 31im2anan9r 877 . . . . . . 7 ((𝑔 ∈ (𝑋𝐻𝑋) ∧ ∈ (𝑋𝐻𝑋)) → ((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓) → ((𝑔(⟨𝑋, 𝑋· 𝑋)) = ∧ (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔)))
33 eqtr2 2630 . . . . . . . 8 (((𝑔(⟨𝑋, 𝑋· 𝑋)) = ∧ (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔) → = 𝑔)
3433eqcomd 2616 . . . . . . 7 (((𝑔(⟨𝑋, 𝑋· 𝑋)) = ∧ (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔) → 𝑔 = )
3523, 32, 34syl56 35 . . . . . 6 ((𝑔 ∈ (𝑋𝐻𝑋) ∧ ∈ (𝑋𝐻𝑋)) → (((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → 𝑔 = ))
3635rgen2a 2960 . . . . 5 𝑔 ∈ (𝑋𝐻𝑋)∀ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → 𝑔 = )
3736a1i 11 . . . 4 (𝜑 → ∀𝑔 ∈ (𝑋𝐻𝑋)∀ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → 𝑔 = ))
38 oveq1 6556 . . . . . . . 8 (𝑔 = → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = ((⟨𝑋, 𝑋· 𝑋)𝑓))
3938eqeq1d 2612 . . . . . . 7 (𝑔 = → ((𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ↔ ((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓))
4039ralbidv 2969 . . . . . 6 (𝑔 = → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓))
41 oveq2 6557 . . . . . . . 8 (𝑔 = → (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑋)))
4241eqeq1d 2612 . . . . . . 7 (𝑔 = → ((𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓))
4342ralbidv 2969 . . . . . 6 (𝑔 = → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓))
4440, 43anbi12d 743 . . . . 5 (𝑔 = → ((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)))
4544rmo4 3366 . . . 4 (∃*𝑔 ∈ (𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ↔ ∀𝑔 ∈ (𝑋𝐻𝑋)∀ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → 𝑔 = ))
4637, 45sylibr 223 . . 3 (𝜑 → ∃*𝑔 ∈ (𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓))
47 rmoim 3374 . . 3 (∀𝑔 ∈ (𝑋𝐻𝑋)(∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)) → (∃*𝑔 ∈ (𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) → ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
4821, 46, 47sylc 63 . 2 (𝜑 → ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
49 reu5 3136 . 2 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) ↔ (∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) ∧ ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
506, 48, 49sylanbrc 695 1 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898  ∃*wrmo 2899  cop 4131  cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-cat 16152
This theorem is referenced by:  catidd  16164  catidcl  16166  catlid  16167  catrid  16168
  Copyright terms: Public domain W3C validator