MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidcl Structured version   Visualization version   GIF version

Theorem catidcl 16166
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b 𝐵 = (Base‘𝐶)
catidcl.h 𝐻 = (Hom ‘𝐶)
catidcl.i 1 = (Id‘𝐶)
catidcl.c (𝜑𝐶 ∈ Cat)
catidcl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
catidcl (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))

Proof of Theorem catidcl
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catidcl.b . . 3 𝐵 = (Base‘𝐶)
2 catidcl.h . . 3 𝐻 = (Hom ‘𝐶)
3 eqid 2610 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 catidcl.c . . 3 (𝜑𝐶 ∈ Cat)
5 catidcl.i . . 3 1 = (Id‘𝐶)
6 catidcl.x . . 3 (𝜑𝑋𝐵)
71, 2, 3, 4, 5, 6cidval 16161 . 2 (𝜑 → ( 1𝑋) = (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)))
81, 2, 3, 4, 6catideu 16159 . . 3 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))
9 riotacl 6525 . . 3 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋))
108, 9syl 17 . 2 (𝜑 → (𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋⟩(comp‘𝐶)𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) ∈ (𝑋𝐻𝑋))
117, 10eqeltrd 2688 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  ∃!wreu 2898  cop 4131  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Idccid 16149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-cat 16152  df-cid 16153
This theorem is referenced by:  oppccatid  16202  monsect  16266  sectid  16269  cicref  16284  catsubcat  16322  fullsubc  16333  idfucl  16364  cofucl  16371  fthsect  16408  fucidcl  16448  initoid  16478  termoid  16479  idahom  16533  catcisolem  16579  xpccatid  16651  1stfcl  16660  2ndfcl  16661  prfcl  16666  evlfcl  16685  curf1cl  16691  curf2cl  16694  curfcl  16695  curfuncf  16701  uncfcurf  16702  diag12  16707  diag2  16708  curf2ndf  16710  hofcl  16722  yon12  16728  yon2  16729  yonedalem3a  16737  yonedalem3b  16742  yonedainv  16744
  Copyright terms: Public domain W3C validator