Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cases2 Structured version   Visualization version   GIF version

Theorem cases2 1005
 Description: Case disjunction according to the value of 𝜑. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by Wolf Lammen, 2-Jan-2020.)
Assertion
Ref Expression
cases2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))

Proof of Theorem cases2
StepHypRef Expression
1 pm3.4 582 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
2 pm2.24 120 . . . . 5 (𝜑 → (¬ 𝜑𝜒))
32adantr 480 . . . 4 ((𝜑𝜓) → (¬ 𝜑𝜒))
41, 3jca 553 . . 3 ((𝜑𝜓) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
5 pm2.21 119 . . . . 5 𝜑 → (𝜑𝜓))
65adantr 480 . . . 4 ((¬ 𝜑𝜒) → (𝜑𝜓))
7 pm3.4 582 . . . 4 ((¬ 𝜑𝜒) → (¬ 𝜑𝜒))
86, 7jca 553 . . 3 ((¬ 𝜑𝜒) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
94, 8jaoi 393 . 2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) → ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
10 pm2.27 41 . . . . . 6 (𝜑 → ((𝜑𝜓) → 𝜓))
1110imdistani 722 . . . . 5 ((𝜑 ∧ (𝜑𝜓)) → (𝜑𝜓))
1211orcd 406 . . . 4 ((𝜑 ∧ (𝜑𝜓)) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
1312adantrr 749 . . 3 ((𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
14 pm2.27 41 . . . . . 6 𝜑 → ((¬ 𝜑𝜒) → 𝜒))
1514imdistani 722 . . . . 5 ((¬ 𝜑 ∧ (¬ 𝜑𝜒)) → (¬ 𝜑𝜒))
1615olcd 407 . . . 4 ((¬ 𝜑 ∧ (¬ 𝜑𝜒)) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
1716adantrl 748 . . 3 ((¬ 𝜑 ∧ ((𝜑𝜓) ∧ (¬ 𝜑𝜒))) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
1813, 17pm2.61ian 827 . 2 (((𝜑𝜓) ∧ (¬ 𝜑𝜒)) → ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
199, 18impbii 198 1 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385 This theorem is referenced by:  dfifp2  1008  ifval  4077  ifpidg  36855  ifpim123g  36864
 Copyright terms: Public domain W3C validator