Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardval3 Structured version   Visualization version   GIF version

Theorem cardval3 8661
 Description: An alternate definition of the value of (card‘𝐴) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
cardval3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴 ∈ dom card → 𝐴 ∈ V)
2 isnum2 8654 . . . 4 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
3 rabn0 3912 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 intex 4747 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
52, 3, 43bitr2i 287 . . 3 (𝐴 ∈ dom card ↔ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
65biimpi 205 . 2 (𝐴 ∈ dom card → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
7 breq2 4587 . . . . 5 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
87rabbidv 3164 . . . 4 (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑥𝑦} = {𝑥 ∈ On ∣ 𝑥𝐴})
98inteqd 4415 . . 3 (𝑦 = 𝐴 {𝑥 ∈ On ∣ 𝑥𝑦} = {𝑥 ∈ On ∣ 𝑥𝐴})
10 df-card 8648 . . 3 card = (𝑦 ∈ V ↦ {𝑥 ∈ On ∣ 𝑥𝑦})
119, 10fvmptg 6189 . 2 ((𝐴 ∈ V ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V) → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
121, 6, 11syl2anc 691 1 (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  {crab 2900  Vcvv 3173  ∅c0 3874  ∩ cint 4410   class class class wbr 4583  dom cdm 5038  Oncon0 5640  ‘cfv 5804   ≈ cen 7838  cardccrd 8644 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-en 7842  df-card 8648 This theorem is referenced by:  cardid2  8662  oncardval  8664  cardidm  8668  cardne  8674  cardval  9247
 Copyright terms: Public domain W3C validator