 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden Structured version   Visualization version   GIF version

Theorem carden 9252
 Description: Two sets are equinumerous iff their cardinal numbers are equal. This important theorem expresses the essential concept behind "cardinality" or "size." This theorem appears as Proposition 10.10 of [TakeutiZaring] p. 85, Theorem 7P of [Enderton] p. 197, and Theorem 9 of [Suppes] p. 242 (among others). The Axiom of Choice is required for its proof. Related theorems are hasheni 12998 and the finite-set-only hashen 12997. This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3401). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem . We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic. The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 8641). (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
carden ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem carden
StepHypRef Expression
1 numth3 9175 . . . . . 6 (𝐴𝐶𝐴 ∈ dom card)
21ad2antrr 758 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ∈ dom card)
3 cardid2 8662 . . . . 5 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
4 ensym 7891 . . . . 5 ((card‘𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴))
52, 3, 43syl 18 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴 ≈ (card‘𝐴))
6 simpr 476 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) = (card‘𝐵))
7 numth3 9175 . . . . . . 7 (𝐵𝐷𝐵 ∈ dom card)
87ad2antlr 759 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐵 ∈ dom card)
98cardidd 9250 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐵) ≈ 𝐵)
106, 9eqbrtrd 4605 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → (card‘𝐴) ≈ 𝐵)
11 entr 7894 . . . 4 ((𝐴 ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐵) → 𝐴𝐵)
125, 10, 11syl2anc 691 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (card‘𝐴) = (card‘𝐵)) → 𝐴𝐵)
1312ex 449 . 2 ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) → 𝐴𝐵))
14 carden2b 8676 . 2 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
1513, 14impbid1 214 1 ((𝐴𝐶𝐵𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  dom cdm 5038  ‘cfv 5804   ≈ cen 7838  cardccrd 8644 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-ac2 9168 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-wrecs 7294  df-recs 7355  df-er 7629  df-en 7842  df-card 8648  df-ac 8822 This theorem is referenced by:  cardeq0  9253  ficard  9266
 Copyright terms: Public domain W3C validator