Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodorylem1 Structured version   Visualization version   GIF version

Theorem caratheodorylem1 39416
Description: Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodorylem1.o (𝜑𝑂 ∈ OutMeas)
caratheodorylem1.s 𝑆 = (CaraGen‘𝑂)
caratheodorylem1.z 𝑍 = (ℤ𝑀)
caratheodorylem1.e (𝜑𝐸:𝑍𝑆)
caratheodorylem1.dj (𝜑Disj 𝑛𝑍 (𝐸𝑛))
caratheodorylem1.g 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
caratheodorylem1.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
caratheodorylem1 (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑖,𝐸,𝑛   𝑖,𝐺,𝑛   𝑖,𝑀,𝑛   𝑖,𝑁,𝑛   𝑖,𝑂,𝑛   𝑛,𝑍   𝜑,𝑖,𝑛
Allowed substitution hints:   𝑆(𝑖,𝑛)   𝑍(𝑖)

Proof of Theorem caratheodorylem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 caratheodorylem1.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12220 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 id 22 . 2 (𝜑𝜑)
5 fveq2 6103 . . . . . 6 (𝑗 = 𝑀 → (𝐺𝑗) = (𝐺𝑀))
65fveq2d 6107 . . . . 5 (𝑗 = 𝑀 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑀)))
7 oveq2 6557 . . . . . . 7 (𝑗 = 𝑀 → (𝑀...𝑗) = (𝑀...𝑀))
87mpteq1d 4666 . . . . . 6 (𝑗 = 𝑀 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))
98fveq2d 6107 . . . . 5 (𝑗 = 𝑀 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))
106, 9eqeq12d 2625 . . . 4 (𝑗 = 𝑀 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))))
1110imbi2d 329 . . 3 (𝑗 = 𝑀 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))))
12 fveq2 6103 . . . . . 6 (𝑗 = 𝑖 → (𝐺𝑗) = (𝐺𝑖))
1312fveq2d 6107 . . . . 5 (𝑗 = 𝑖 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑖)))
14 oveq2 6557 . . . . . . 7 (𝑗 = 𝑖 → (𝑀...𝑗) = (𝑀...𝑖))
1514mpteq1d 4666 . . . . . 6 (𝑗 = 𝑖 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))
1615fveq2d 6107 . . . . 5 (𝑗 = 𝑖 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
1713, 16eqeq12d 2625 . . . 4 (𝑗 = 𝑖 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))))
1817imbi2d 329 . . 3 (𝑗 = 𝑖 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))))
19 fveq2 6103 . . . . . 6 (𝑗 = (𝑖 + 1) → (𝐺𝑗) = (𝐺‘(𝑖 + 1)))
2019fveq2d 6107 . . . . 5 (𝑗 = (𝑖 + 1) → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺‘(𝑖 + 1))))
21 oveq2 6557 . . . . . . 7 (𝑗 = (𝑖 + 1) → (𝑀...𝑗) = (𝑀...(𝑖 + 1)))
2221mpteq1d 4666 . . . . . 6 (𝑗 = (𝑖 + 1) → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛))))
2322fveq2d 6107 . . . . 5 (𝑗 = (𝑖 + 1) → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
2420, 23eqeq12d 2625 . . . 4 (𝑗 = (𝑖 + 1) → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛))))))
2524imbi2d 329 . . 3 (𝑗 = (𝑖 + 1) → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))))
26 fveq2 6103 . . . . . 6 (𝑗 = 𝑁 → (𝐺𝑗) = (𝐺𝑁))
2726fveq2d 6107 . . . . 5 (𝑗 = 𝑁 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑁)))
28 oveq2 6557 . . . . . . 7 (𝑗 = 𝑁 → (𝑀...𝑗) = (𝑀...𝑁))
2928mpteq1d 4666 . . . . . 6 (𝑗 = 𝑁 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))
3029fveq2d 6107 . . . . 5 (𝑗 = 𝑁 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
3127, 30eqeq12d 2625 . . . 4 (𝑗 = 𝑁 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))))
3231imbi2d 329 . . 3 (𝑗 = 𝑁 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))))
33 eluzel2 11568 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
341, 33syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
35 fzsn 12254 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3634, 35syl 17 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
3736mpteq1d 4666 . . . . . 6 (𝜑 → (𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))))
3837fveq2d 6107 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))))
39 caratheodorylem1.o . . . . . . . . 9 (𝜑𝑂 ∈ OutMeas)
4039adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑀}) → 𝑂 ∈ OutMeas)
41 eqid 2610 . . . . . . . 8 dom 𝑂 = dom 𝑂
42 caratheodorylem1.s . . . . . . . . . . . 12 𝑆 = (CaraGen‘𝑂)
4342caragenss 39394 . . . . . . . . . . 11 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
4440, 43syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑀}) → 𝑆 ⊆ dom 𝑂)
45 caratheodorylem1.e . . . . . . . . . . . 12 (𝜑𝐸:𝑍𝑆)
4645adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ {𝑀}) → 𝐸:𝑍𝑆)
47 elsni 4142 . . . . . . . . . . . . 13 (𝑛 ∈ {𝑀} → 𝑛 = 𝑀)
4847adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ {𝑀}) → 𝑛 = 𝑀)
49 uzid 11578 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
5034, 49syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
51 caratheodorylem1.z . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
5250, 51syl6eleqr 2699 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
5352adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ {𝑀}) → 𝑀𝑍)
5448, 53eqeltrd 2688 . . . . . . . . . . 11 ((𝜑𝑛 ∈ {𝑀}) → 𝑛𝑍)
5546, 54ffvelrnd 6268 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ∈ 𝑆)
5644, 55sseldd 3569 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ∈ dom 𝑂)
57 elssuni 4403 . . . . . . . . 9 ((𝐸𝑛) ∈ dom 𝑂 → (𝐸𝑛) ⊆ dom 𝑂)
5856, 57syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ⊆ dom 𝑂)
5940, 41, 58omecl 39393 . . . . . . 7 ((𝜑𝑛 ∈ {𝑀}) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
60 eqid 2610 . . . . . . 7 (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))
6159, 60fmptd 6292 . . . . . 6 (𝜑 → (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))):{𝑀}⟶(0[,]+∞))
6234, 61sge0sn 39272 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))) = ((𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))‘𝑀))
63 eqidd 2611 . . . . . 6 (𝜑 → (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))))
6436iuneq1d 4481 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) = 𝑖 ∈ {𝑀} (𝐸𝑖))
65 fveq2 6103 . . . . . . . . . . . 12 (𝑖 = 𝑀 → (𝐸𝑖) = (𝐸𝑀))
6665iunxsng 4538 . . . . . . . . . . 11 (𝑀𝑍 𝑖 ∈ {𝑀} (𝐸𝑖) = (𝐸𝑀))
6752, 66syl 17 . . . . . . . . . 10 (𝜑 𝑖 ∈ {𝑀} (𝐸𝑖) = (𝐸𝑀))
68 eqidd 2611 . . . . . . . . . 10 (𝜑 → (𝐸𝑀) = (𝐸𝑀))
6964, 67, 683eqtrrd 2649 . . . . . . . . 9 (𝜑 → (𝐸𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
7069adantr 480 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐸𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
71 fveq2 6103 . . . . . . . . 9 (𝑛 = 𝑀 → (𝐸𝑛) = (𝐸𝑀))
7271adantl 481 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐸𝑛) = (𝐸𝑀))
73 caratheodorylem1.g . . . . . . . . . . 11 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
7473a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)))
75 oveq2 6557 . . . . . . . . . . . 12 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
7675iuneq1d 4481 . . . . . . . . . . 11 (𝑛 = 𝑀 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
7776adantl 481 . . . . . . . . . 10 ((𝜑𝑛 = 𝑀) → 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
78 ovex 6577 . . . . . . . . . . . 12 (𝑀...𝑀) ∈ V
79 fvex 6113 . . . . . . . . . . . 12 (𝐸𝑖) ∈ V
8078, 79iunex 7039 . . . . . . . . . . 11 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) ∈ V
8180a1i 11 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) ∈ V)
8274, 77, 52, 81fvmptd 6197 . . . . . . . . 9 (𝜑 → (𝐺𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
8382adantr 480 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐺𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
8470, 72, 833eqtr4d 2654 . . . . . . 7 ((𝜑𝑛 = 𝑀) → (𝐸𝑛) = (𝐺𝑀))
8584fveq2d 6107 . . . . . 6 ((𝜑𝑛 = 𝑀) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐺𝑀)))
86 snidg 4153 . . . . . . 7 (𝑀𝑍𝑀 ∈ {𝑀})
8752, 86syl 17 . . . . . 6 (𝜑𝑀 ∈ {𝑀})
88 fvex 6113 . . . . . . 7 (𝑂‘(𝐺𝑀)) ∈ V
8988a1i 11 . . . . . 6 (𝜑 → (𝑂‘(𝐺𝑀)) ∈ V)
9063, 85, 87, 89fvmptd 6197 . . . . 5 (𝜑 → ((𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))‘𝑀) = (𝑂‘(𝐺𝑀)))
9138, 62, 903eqtrrd 2649 . . . 4 (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))
9291a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))))
93 simp3 1056 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → 𝜑)
94 simp1 1054 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → 𝑖 ∈ (𝑀..^𝑁))
95 id 22 . . . . . . 7 ((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))))
9695imp 444 . . . . . 6 (((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
97963adant1 1072 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
98 elfzoel1 12337 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
99 elfzoelz 12339 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℤ)
10099peano2zd 11361 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ ℤ)
10198, 100, 1003jca 1235 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ))
10298zred 11358 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ)
103100zred 11358 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ ℝ)
10499zred 11358 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℝ)
105 elfzole1 12347 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑀..^𝑁) → 𝑀𝑖)
106104ltp1d 10833 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 < (𝑖 + 1))
107102, 104, 103, 105, 106lelttrd 10074 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 < (𝑖 + 1))
108102, 103, 107ltled 10064 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ≤ (𝑖 + 1))
109 leid 10012 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ ℝ → (𝑖 + 1) ≤ (𝑖 + 1))
110103, 109syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ≤ (𝑖 + 1))
111101, 108, 110jca32 556 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ (𝑖 + 1))))
112 elfz2 12204 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ (𝑀...(𝑖 + 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ (𝑖 + 1))))
113111, 112sylibr 223 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ (𝑀...(𝑖 + 1)))
114113adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (𝑀...(𝑖 + 1)))
115 fveq2 6103 . . . . . . . . . . . . 13 (𝑗 = (𝑖 + 1) → (𝐸𝑗) = (𝐸‘(𝑖 + 1)))
116115ssiun2s 4500 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (𝑀...(𝑖 + 1)) → (𝐸‘(𝑖 + 1)) ⊆ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
117114, 116syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
118 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (𝐸𝑖) = (𝐸𝑗))
119118cbviunv 4495 . . . . . . . . . . . . . . . 16 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗)
120119mpteq2i 4669 . . . . . . . . . . . . . . 15 (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)) = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗))
12173, 120eqtri 2632 . . . . . . . . . . . . . 14 𝐺 = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗))
122121a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝐺 = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗)))
123 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑛 = (𝑖 + 1) → (𝑀...𝑛) = (𝑀...(𝑖 + 1)))
124123iuneq1d 4481 . . . . . . . . . . . . . 14 (𝑛 = (𝑖 + 1) → 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗) = 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
125124adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 = (𝑖 + 1)) → 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗) = 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
12634adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
12799adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℤ)
128127peano2zd 11361 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ ℤ)
129126zred 11358 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
130128zred 11358 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ ℝ)
131127zred 11358 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℝ)
132105adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀𝑖)
133131ltp1d 10833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 < (𝑖 + 1))
134129, 131, 130, 132, 133lelttrd 10074 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 < (𝑖 + 1))
135129, 130, 134ltled 10064 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ≤ (𝑖 + 1))
136126, 128, 1353jca 1235 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1)))
137 eluz2 11569 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1)))
138136, 137sylibr 223 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (ℤ𝑀))
13951eqcomi 2619 . . . . . . . . . . . . . 14 (ℤ𝑀) = 𝑍
140138, 139syl6eleq 2698 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ 𝑍)
141 ovex 6577 . . . . . . . . . . . . . . 15 (𝑀...(𝑖 + 1)) ∈ V
142 fvex 6113 . . . . . . . . . . . . . . 15 (𝐸𝑗) ∈ V
143141, 142iunex 7039 . . . . . . . . . . . . . 14 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ∈ V
144143a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ∈ V)
145122, 125, 140, 144fvmptd 6197 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) = 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
146145eqcomd 2616 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) = (𝐺‘(𝑖 + 1)))
147117, 146sseqtrd 3604 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)))
148 sseqin2 3779 . . . . . . . . . . 11 ((𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)) ↔ ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
149148biimpi 205 . . . . . . . . . 10 ((𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)) → ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
150147, 149syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
151150fveq2d 6107 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) = (𝑂‘(𝐸‘(𝑖 + 1))))
152 nfcv 2751 . . . . . . . . . . . . 13 𝑗(𝐸‘(𝑖 + 1))
153 elfzouz 12343 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ (ℤ𝑀))
154153adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ (ℤ𝑀))
155152, 154, 115iunp1 38260 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))))
156145, 155eqtrd 2644 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))))
157156difeq1d 3689 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
158 caratheodorylem1.dj . . . . . . . . . . . . . . 15 (𝜑Disj 𝑛𝑍 (𝐸𝑛))
159 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐸𝑛) = (𝐸𝑗))
160159cbvdisjv 4564 . . . . . . . . . . . . . . 15 (Disj 𝑛𝑍 (𝐸𝑛) ↔ Disj 𝑗𝑍 (𝐸𝑗))
161158, 160sylib 207 . . . . . . . . . . . . . 14 (𝜑Disj 𝑗𝑍 (𝐸𝑗))
162161adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → Disj 𝑗𝑍 (𝐸𝑗))
163 fzssuz 12253 . . . . . . . . . . . . . . 15 (𝑀...𝑖) ⊆ (ℤ𝑀)
164163, 139sseqtri 3600 . . . . . . . . . . . . . 14 (𝑀...𝑖) ⊆ 𝑍
165164a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑀...𝑖) ⊆ 𝑍)
166 fzp1nel 12293 . . . . . . . . . . . . . . . 16 ¬ (𝑖 + 1) ∈ (𝑀...𝑖)
167166a1i 11 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → ¬ (𝑖 + 1) ∈ (𝑀...𝑖))
168167adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ¬ (𝑖 + 1) ∈ (𝑀...𝑖))
169140, 168eldifd 3551 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (𝑍 ∖ (𝑀...𝑖)))
170162, 165, 169, 115disjiun2 38251 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∩ (𝐸‘(𝑖 + 1))) = ∅)
171 undif4 3987 . . . . . . . . . . . 12 (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∩ (𝐸‘(𝑖 + 1))) = ∅ → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
172170, 171syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
173172eqcomd 2616 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))))
174 simpl 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝜑)
175154, 139syl6eleq 2698 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖𝑍)
176121a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝐺 = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗)))
177 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → 𝑛 = 𝑖)
178177oveq2d 6565 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → (𝑀...𝑛) = (𝑀...𝑖))
179178iuneq1d 4481 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
180 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑖𝑍)
181 ovex 6577 . . . . . . . . . . . . . . . . 17 (𝑀...𝑖) ∈ V
182181, 142iunex 7039 . . . . . . . . . . . . . . . 16 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∈ V
183182a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∈ V)
184176, 179, 180, 183fvmptd 6197 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐺𝑖) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
185174, 175, 184syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺𝑖) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
186185eqcomd 2616 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) = (𝐺𝑖))
187 difid 3902 . . . . . . . . . . . . 13 ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ∅
188187a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ∅)
189186, 188uneq12d 3730 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = ((𝐺𝑖) ∪ ∅))
190 un0 3919 . . . . . . . . . . . 12 ((𝐺𝑖) ∪ ∅) = (𝐺𝑖)
191190a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺𝑖) ∪ ∅) = (𝐺𝑖))
192189, 191eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (𝐺𝑖))
193157, 173, 1923eqtrd 2648 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = (𝐺𝑖))
194193fveq2d 6107 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (𝑂‘(𝐺𝑖)))
195151, 194oveq12d 6567 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
1961953adant3 1074 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
19739adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑂 ∈ OutMeas)
19845adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝐸:𝑍𝑆)
199198, 140ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ∈ 𝑆)
200 simpll 786 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝜑)
20198adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑀 ∈ ℤ)
202 elfzelz 12213 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑀...(𝑖 + 1)) → 𝑗 ∈ ℤ)
203202adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ ℤ)
204 elfzle1 12215 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑀...(𝑖 + 1)) → 𝑀𝑗)
205204adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑀𝑗)
206201, 203, 2053jca 1235 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀𝑗))
207 eluz2 11569 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀𝑗))
208206, 207sylibr 223 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ (ℤ𝑀))
209208, 139syl6eleq 2698 . . . . . . . . . . . . . 14 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗𝑍)
210209adantll 746 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗𝑍)
21139, 43syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ⊆ dom 𝑂)
212211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝑆 ⊆ dom 𝑂)
21345ffvelrnda 6267 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ 𝑆)
214212, 213sseldd 3569 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ dom 𝑂)
215 elssuni 4403 . . . . . . . . . . . . . 14 ((𝐸𝑗) ∈ dom 𝑂 → (𝐸𝑗) ⊆ dom 𝑂)
216214, 215syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝐸𝑗) ⊆ dom 𝑂)
217200, 210, 216syl2anc 691 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → (𝐸𝑗) ⊆ dom 𝑂)
218217ralrimiva 2949 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ∀𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
219 iunss 4497 . . . . . . . . . . 11 ( 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂 ↔ ∀𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
220218, 219sylibr 223 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
221145, 220eqsstrd 3602 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) ⊆ dom 𝑂)
222197, 42, 41, 199, 221caragensplit 39390 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = (𝑂‘(𝐺‘(𝑖 + 1))))
223222eqcomd 2616 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐺‘(𝑖 + 1))) = ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))))
2242233adant3 1074 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝑂‘(𝐺‘(𝑖 + 1))) = ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))))
225197adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝑂 ∈ OutMeas)
226174adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝜑)
227 elfzuz 12209 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀...(𝑖 + 1)) → 𝑛 ∈ (ℤ𝑀))
228227, 139syl6eleq 2698 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...(𝑖 + 1)) → 𝑛𝑍)
229228adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝑛𝑍)
23045, 211fssd 5970 . . . . . . . . . . . . 13 (𝜑𝐸:𝑍⟶dom 𝑂)
231230ffvelrnda 6267 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑂)
232231, 57syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ dom 𝑂)
233226, 229, 232syl2anc 691 . . . . . . . . . 10 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → (𝐸𝑛) ⊆ dom 𝑂)
234225, 41, 233omecl 39393 . . . . . . . . 9 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
235 fveq2 6103 . . . . . . . . . 10 (𝑛 = (𝑖 + 1) → (𝐸𝑛) = (𝐸‘(𝑖 + 1)))
236235fveq2d 6107 . . . . . . . . 9 (𝑛 = (𝑖 + 1) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸‘(𝑖 + 1))))
237154, 234, 236sge0p1 39307 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
2382373adant3 1074 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
239 id 22 . . . . . . . . . 10 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
240239eqcomd 2616 . . . . . . . . 9 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) = (𝑂‘(𝐺𝑖)))
241240oveq1d 6564 . . . . . . . 8 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
2422413ad2ant3 1077 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
243 simpl 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...𝑖)) → 𝜑)
244164sseli 3564 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀...𝑖) → 𝑗𝑍)
245244adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...𝑖)) → 𝑗𝑍)
246243, 245, 216syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀...𝑖)) → (𝐸𝑗) ⊆ dom 𝑂)
247246adantlr 747 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (𝑀...𝑖)) → (𝐸𝑗) ⊆ dom 𝑂)
248247ralrimiva 2949 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ∀𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
249 iunss 4497 . . . . . . . . . . . . 13 ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂 ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
250248, 249sylibr 223 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
251184, 250eqsstrd 3602 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐺𝑖) ⊆ dom 𝑂)
252174, 175, 251syl2anc 691 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺𝑖) ⊆ dom 𝑂)
253197, 41, 252omexrcl 39397 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐺𝑖)) ∈ ℝ*)
254117, 220sstrd 3578 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ dom 𝑂)
255197, 41, 254omexrcl 39397 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐸‘(𝑖 + 1))) ∈ ℝ*)
256253, 255xaddcomd 38481 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
2572563adant3 1074 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
258238, 242, 2573eqtrd 2648 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
259196, 224, 2583eqtr4d 2654 . . . . 5 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
26093, 94, 97, 259syl3anc 1318 . . . 4 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
2612603exp 1256 . . 3 (𝑖 ∈ (𝑀..^𝑁) → ((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝜑 → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))))
26211, 18, 25, 32, 92, 261fzind2 12448 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))))
2633, 4, 262sylc 63 1 (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   cuni 4372   ciun 4455  Disj wdisj 4553   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  cle 9954  cz 11254  cuz 11563   +𝑒 cxad 11820  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  Σ^csumge0 39255  OutMeascome 39379  CaraGenccaragen 39381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256  df-ome 39380  df-caragen 39382
This theorem is referenced by:  caratheodorylem2  39417
  Copyright terms: Public domain W3C validator