Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragen0 Structured version   Visualization version   GIF version

Theorem caragen0 39396
 Description: The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragen0.o (𝜑𝑂 ∈ OutMeas)
caragen0.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragen0 (𝜑 → ∅ ∈ 𝑆)

Proof of Theorem caragen0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 caragen0.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2610 . 2 dom 𝑂 = dom 𝑂
3 caragen0.s . 2 𝑆 = (CaraGen‘𝑂)
4 0elpw 4760 . . 3 ∅ ∈ 𝒫 dom 𝑂
54a1i 11 . 2 (𝜑 → ∅ ∈ 𝒫 dom 𝑂)
6 in0 3920 . . . . . 6 (𝑎 ∩ ∅) = ∅
76fveq2i 6106 . . . . 5 (𝑂‘(𝑎 ∩ ∅)) = (𝑂‘∅)
8 dif0 3904 . . . . . 6 (𝑎 ∖ ∅) = 𝑎
98fveq2i 6106 . . . . 5 (𝑂‘(𝑎 ∖ ∅)) = (𝑂𝑎)
107, 9oveq12i 6561 . . . 4 ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂𝑎))
1110a1i 11 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = ((𝑂‘∅) +𝑒 (𝑂𝑎)))
121ome0 39387 . . . . 5 (𝜑 → (𝑂‘∅) = 0)
1312adantr 480 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘∅) = 0)
1413oveq1d 6564 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘∅) +𝑒 (𝑂𝑎)) = (0 +𝑒 (𝑂𝑎)))
15 iccssxr 12127 . . . . 5 (0[,]+∞) ⊆ ℝ*
161adantr 480 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
17 elpwi 4117 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1817adantl 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
1916, 2, 18omecl 39393 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ (0[,]+∞))
2015, 19sseldi 3566 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ ℝ*)
2120xaddid2d 38476 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (0 +𝑒 (𝑂𝑎)) = (𝑂𝑎))
2211, 14, 213eqtrd 2648 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ∅)) +𝑒 (𝑂‘(𝑎 ∖ ∅))) = (𝑂𝑎))
231, 2, 3, 5, 22carageneld 39392 1 (𝜑 → ∅ ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  ∪ cuni 4372  dom cdm 5038  ‘cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  ℝ*cxr 9952   +𝑒 cxad 11820  [,]cicc 12049  OutMeascome 39379  CaraGenccaragen 39381 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-xadd 11823  df-icc 12053  df-ome 39380  df-caragen 39382 This theorem is referenced by:  caragenfiiuncl  39405  caragenunicl  39414  caragensal  39415  caratheodory  39418
 Copyright terms: Public domain W3C validator