Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdir2d Structured version   Visualization version   GIF version

Theorem caovdir2d 6748
 Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdir2d.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)))
caovdir2d.2 (𝜑𝐴𝑆)
caovdir2d.3 (𝜑𝐵𝑆)
caovdir2d.4 (𝜑𝐶𝑆)
caovdir2d.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
caovdir2d.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
caovdir2d (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdir2d
StepHypRef Expression
1 caovdir2d.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)))
2 caovdir2d.4 . . 3 (𝜑𝐶𝑆)
3 caovdir2d.2 . . 3 (𝜑𝐴𝑆)
4 caovdir2d.3 . . 3 (𝜑𝐵𝑆)
51, 2, 3, 4caovdid 6747 . 2 (𝜑 → (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)))
6 caovdir2d.com . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
7 caovdir2d.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
87, 3, 4caovcld 6725 . . 3 (𝜑 → (𝐴𝐹𝐵) ∈ 𝑆)
96, 8, 2caovcomd 6728 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = (𝐶𝐺(𝐴𝐹𝐵)))
106, 3, 2caovcomd 6728 . . 3 (𝜑 → (𝐴𝐺𝐶) = (𝐶𝐺𝐴))
116, 4, 2caovcomd 6728 . . 3 (𝜑 → (𝐵𝐺𝐶) = (𝐶𝐺𝐵))
1210, 11oveq12d 6567 . 2 (𝜑 → ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)))
135, 9, 123eqtr4d 2654 1 (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator