Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov411 Structured version   Visualization version   GIF version

Theorem caov411 6764
 Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1 𝐴 ∈ V
caov.2 𝐵 ∈ V
caov.3 𝐶 ∈ V
caov.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caov.ass ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
caov.4 𝐷 ∈ V
Assertion
Ref Expression
caov411 ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caov411
StepHypRef Expression
1 caov.1 . . . 4 𝐴 ∈ V
2 caov.2 . . . 4 𝐵 ∈ V
3 caov.3 . . . 4 𝐶 ∈ V
4 caov.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
5 caov.ass . . . 4 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
61, 2, 3, 4, 5caov31 6761 . . 3 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)
76oveq1i 6559 . 2 (((𝐴𝐹𝐵)𝐹𝐶)𝐹𝐷) = (((𝐶𝐹𝐵)𝐹𝐴)𝐹𝐷)
8 ovex 6577 . . 3 (𝐴𝐹𝐵) ∈ V
9 caov.4 . . 3 𝐷 ∈ V
108, 3, 9, 5caovass 6732 . 2 (((𝐴𝐹𝐵)𝐹𝐶)𝐹𝐷) = ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷))
11 ovex 6577 . . 3 (𝐶𝐹𝐵) ∈ V
1211, 1, 9, 5caovass 6732 . 2 (((𝐶𝐹𝐵)𝐹𝐴)𝐹𝐷) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))
137, 10, 123eqtr3i 2640 1 ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  Vcvv 3173  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552 This theorem is referenced by:  ecopovtrn  7737  distrnq  9662  lterpq  9671  ltanq  9672  prlem936  9748
 Copyright terms: Public domain W3C validator