MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwelem Structured version   Visualization version   GIF version

Theorem canthwelem 9351
Description: Lemma for canthnum 9350. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
canthwe.1 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
canthwe.2 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
canthwe.3 𝐵 = dom 𝑊
canthwe.4 𝐶 = ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})
Assertion
Ref Expression
canthwelem (𝐴𝑉 → ¬ 𝐹:𝑂1-1𝐴)
Distinct variable groups:   𝑢,𝑟,𝑥,𝑦,𝐵   𝐶,𝑟,𝑥   𝑂,𝑟,𝑢,𝑥,𝑦   𝑉,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑢,𝑥,𝑦   𝐹,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑦,𝑢)

Proof of Theorem canthwelem
StepHypRef Expression
1 eqid 2610 . . . . . . . 8 𝐵 = 𝐵
2 eqid 2610 . . . . . . . 8 (𝑊𝐵) = (𝑊𝐵)
31, 2pm3.2i 470 . . . . . . 7 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
4 canthwe.2 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
5 elex 3185 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ V)
65adantr 480 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐴 ∈ V)
7 df-ov 6552 . . . . . . . . 9 (𝑥𝐹𝑟) = (𝐹‘⟨𝑥, 𝑟⟩)
8 f1f 6014 . . . . . . . . . . 11 (𝐹:𝑂1-1𝐴𝐹:𝑂𝐴)
98ad2antlr 759 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → 𝐹:𝑂𝐴)
10 simpr 476 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥))
11 opabid 4907 . . . . . . . . . . . 12 (⟨𝑥, 𝑟⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥))
1210, 11sylibr 223 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → ⟨𝑥, 𝑟⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
13 canthwe.1 . . . . . . . . . . 11 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
1412, 13syl6eleqr 2699 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → ⟨𝑥, 𝑟⟩ ∈ 𝑂)
159, 14ffvelrnd 6268 . . . . . . . . 9 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝐹‘⟨𝑥, 𝑟⟩) ∈ 𝐴)
167, 15syl5eqel 2692 . . . . . . . 8 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
17 canthwe.3 . . . . . . . 8 𝐵 = dom 𝑊
184, 6, 16, 17fpwwe2 9344 . . . . . . 7 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐵𝐹(𝑊𝐵)) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
193, 18mpbiri 247 . . . . . 6 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝑊(𝑊𝐵) ∧ (𝐵𝐹(𝑊𝐵)) ∈ 𝐵))
2019simprd 478 . . . . 5 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐹(𝑊𝐵)) ∈ 𝐵)
21 canthwe.4 . . . . . . . . . 10 𝐶 = ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})
2221, 21xpeq12i 5061 . . . . . . . . . . 11 (𝐶 × 𝐶) = (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}))
2322ineq2i 3773 . . . . . . . . . 10 ((𝑊𝐵) ∩ (𝐶 × 𝐶)) = ((𝑊𝐵) ∩ (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})))
2421, 23oveq12i 6561 . . . . . . . . 9 (𝐶𝐹((𝑊𝐵) ∩ (𝐶 × 𝐶))) = (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})𝐹((𝑊𝐵) ∩ (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}))))
2519simpld 474 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐵𝑊(𝑊𝐵))
264, 6, 25fpwwe2lem3 9334 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝐵𝐹(𝑊𝐵)) ∈ 𝐵) → (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})𝐹((𝑊𝐵) ∩ (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})))) = (𝐵𝐹(𝑊𝐵)))
2720, 26mpdan 699 . . . . . . . . 9 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})𝐹((𝑊𝐵) ∩ (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})))) = (𝐵𝐹(𝑊𝐵)))
2824, 27syl5eq 2656 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐶𝐹((𝑊𝐵) ∩ (𝐶 × 𝐶))) = (𝐵𝐹(𝑊𝐵)))
29 df-ov 6552 . . . . . . . 8 (𝐶𝐹((𝑊𝐵) ∩ (𝐶 × 𝐶))) = (𝐹‘⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩)
30 df-ov 6552 . . . . . . . 8 (𝐵𝐹(𝑊𝐵)) = (𝐹‘⟨𝐵, (𝑊𝐵)⟩)
3128, 29, 303eqtr3g 2667 . . . . . . 7 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐹‘⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩) = (𝐹‘⟨𝐵, (𝑊𝐵)⟩))
32 simpr 476 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐹:𝑂1-1𝐴)
33 cnvimass 5404 . . . . . . . . . . . . 13 ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ⊆ dom (𝑊𝐵)
344, 6fpwwe2lem2 9333 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 [((𝑊𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝐵) ∩ (𝑢 × 𝑢))) = 𝑦))))
3525, 34mpbid 221 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 [((𝑊𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝐵) ∩ (𝑢 × 𝑢))) = 𝑦)))
3635simpld 474 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)))
3736simprd 478 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) ⊆ (𝐵 × 𝐵))
38 dmss 5245 . . . . . . . . . . . . . . 15 ((𝑊𝐵) ⊆ (𝐵 × 𝐵) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
3937, 38syl 17 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝑂1-1𝐴) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
40 dmxpss 5484 . . . . . . . . . . . . . 14 dom (𝐵 × 𝐵) ⊆ 𝐵
4139, 40syl6ss 3580 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:𝑂1-1𝐴) → dom (𝑊𝐵) ⊆ 𝐵)
4233, 41syl5ss 3579 . . . . . . . . . . . 12 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ⊆ 𝐵)
4321, 42syl5eqss 3612 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐶𝐵)
4436simpld 474 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐵𝐴)
4543, 44sstrd 3578 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐶𝐴)
46 inss2 3796 . . . . . . . . . . 11 ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶)
4746a1i 11 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶))
4835simprd 478 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 [((𝑊𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝐵) ∩ (𝑢 × 𝑢))) = 𝑦))
4948simpld 474 . . . . . . . . . . . 12 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) We 𝐵)
50 wess 5025 . . . . . . . . . . . 12 (𝐶𝐵 → ((𝑊𝐵) We 𝐵 → (𝑊𝐵) We 𝐶))
5143, 49, 50sylc 63 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) We 𝐶)
52 weinxp 5109 . . . . . . . . . . 11 ((𝑊𝐵) We 𝐶 ↔ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)
5351, 52sylib 207 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)
54 fvex 6113 . . . . . . . . . . . . . 14 (𝑊𝐵) ∈ V
5554cnvex 7006 . . . . . . . . . . . . 13 (𝑊𝐵) ∈ V
5655imaex 6996 . . . . . . . . . . . 12 ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ∈ V
5721, 56eqeltri 2684 . . . . . . . . . . 11 𝐶 ∈ V
5854inex1 4727 . . . . . . . . . . 11 ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ∈ V
59 simpl 472 . . . . . . . . . . . . 13 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → 𝑥 = 𝐶)
6059sseq1d 3595 . . . . . . . . . . . 12 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → (𝑥𝐴𝐶𝐴))
61 simpr 476 . . . . . . . . . . . . 13 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → 𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶)))
6259sqxpeqd 5065 . . . . . . . . . . . . 13 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → (𝑥 × 𝑥) = (𝐶 × 𝐶))
6361, 62sseq12d 3597 . . . . . . . . . . . 12 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶)))
64 weeq2 5027 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → (𝑟 We 𝑥𝑟 We 𝐶))
65 weeq1 5026 . . . . . . . . . . . . 13 (𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶)) → (𝑟 We 𝐶 ↔ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶))
6664, 65sylan9bb 732 . . . . . . . . . . . 12 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → (𝑟 We 𝑥 ↔ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶))
6760, 63, 663anbi123d 1391 . . . . . . . . . . 11 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝐶𝐴 ∧ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶) ∧ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)))
6857, 58, 67opelopaba 4916 . . . . . . . . . 10 (⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐶𝐴 ∧ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶) ∧ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶))
6945, 47, 53, 68syl3anbrc 1239 . . . . . . . . 9 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
7069, 13syl6eleqr 2699 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ ∈ 𝑂)
716, 44ssexd 4733 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐵 ∈ V)
7254a1i 11 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) ∈ V)
73 simpl 472 . . . . . . . . . . . . . 14 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → 𝑥 = 𝐵)
7473sseq1d 3595 . . . . . . . . . . . . 13 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → (𝑥𝐴𝐵𝐴))
75 simpr 476 . . . . . . . . . . . . . 14 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → 𝑟 = (𝑊𝐵))
7673sqxpeqd 5065 . . . . . . . . . . . . . 14 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → (𝑥 × 𝑥) = (𝐵 × 𝐵))
7775, 76sseq12d 3597 . . . . . . . . . . . . 13 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ (𝑊𝐵) ⊆ (𝐵 × 𝐵)))
78 weeq2 5027 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑟 We 𝑥𝑟 We 𝐵))
79 weeq1 5026 . . . . . . . . . . . . . 14 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
8078, 79sylan9bb 732 . . . . . . . . . . . . 13 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → (𝑟 We 𝑥 ↔ (𝑊𝐵) We 𝐵))
8174, 77, 803anbi123d 1391 . . . . . . . . . . . 12 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊𝐵) We 𝐵)))
8281opelopabga 4913 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ (𝑊𝐵) ∈ V) → (⟨𝐵, (𝑊𝐵)⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊𝐵) We 𝐵)))
8371, 72, 82syl2anc 691 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (⟨𝐵, (𝑊𝐵)⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊𝐵) We 𝐵)))
8444, 37, 49, 83mpbir3and 1238 . . . . . . . . 9 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐵, (𝑊𝐵)⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
8584, 13syl6eleqr 2699 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐵, (𝑊𝐵)⟩ ∈ 𝑂)
86 f1fveq 6420 . . . . . . . 8 ((𝐹:𝑂1-1𝐴 ∧ (⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ ∈ 𝑂 ∧ ⟨𝐵, (𝑊𝐵)⟩ ∈ 𝑂)) → ((𝐹‘⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩) = (𝐹‘⟨𝐵, (𝑊𝐵)⟩) ↔ ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ = ⟨𝐵, (𝑊𝐵)⟩))
8732, 70, 85, 86syl12anc 1316 . . . . . . 7 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝐹‘⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩) = (𝐹‘⟨𝐵, (𝑊𝐵)⟩) ↔ ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ = ⟨𝐵, (𝑊𝐵)⟩))
8831, 87mpbid 221 . . . . . 6 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ = ⟨𝐵, (𝑊𝐵)⟩)
8957, 58opth1 4870 . . . . . 6 (⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ = ⟨𝐵, (𝑊𝐵)⟩ → 𝐶 = 𝐵)
9088, 89syl 17 . . . . 5 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐶 = 𝐵)
9120, 90eleqtrrd 2691 . . . 4 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐹(𝑊𝐵)) ∈ 𝐶)
9291, 21syl6eleq 2698 . . 3 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐹(𝑊𝐵)) ∈ ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}))
93 ovex 6577 . . . . 5 (𝐵𝐹(𝑊𝐵)) ∈ V
9493eliniseg 5413 . . . 4 ((𝐵𝐹(𝑊𝐵)) ∈ 𝐵 → ((𝐵𝐹(𝑊𝐵)) ∈ ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ↔ (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵))))
9520, 94syl 17 . . 3 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝐵𝐹(𝑊𝐵)) ∈ ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ↔ (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵))))
9692, 95mpbid 221 . 2 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵)))
97 weso 5029 . . . 4 ((𝑊𝐵) We 𝐵 → (𝑊𝐵) Or 𝐵)
9849, 97syl 17 . . 3 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) Or 𝐵)
99 sonr 4980 . . 3 (((𝑊𝐵) Or 𝐵 ∧ (𝐵𝐹(𝑊𝐵)) ∈ 𝐵) → ¬ (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵)))
10098, 20, 99syl2anc 691 . 2 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ¬ (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵)))
10196, 100pm2.65da 598 1 (𝐴𝑉 → ¬ 𝐹:𝑂1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  [wsbc 3402  cin 3539  wss 3540  {csn 4125  cop 4131   cuni 4372   class class class wbr 4583  {copab 4642   Or wor 4958   We wwe 4996   × cxp 5036  ccnv 5037  dom cdm 5038  cima 5041  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-wrecs 7294  df-recs 7355  df-oi 8298
This theorem is referenced by:  canthwe  9352
  Copyright terms: Public domain W3C validator