Step | Hyp | Ref
| Expression |
1 | | simp1 1054 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ⊆ 𝐴) |
2 | | selpw 4115 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
3 | 1, 2 | sylibr 223 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ 𝒫 𝐴) |
4 | | simp2 1055 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝑥 × 𝑥)) |
5 | | xpss12 5148 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴)) |
6 | 1, 1, 5 | syl2anc 691 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴)) |
7 | 4, 6 | sstrd 3578 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝐴 × 𝐴)) |
8 | | selpw 4115 |
. . . . . . . 8
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴)) |
9 | 7, 8 | sylibr 223 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
10 | 3, 9 | jca 553 |
. . . . . 6
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))) |
11 | 10 | ssopab2i 4928 |
. . . . 5
⊢
{〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ⊆ {〈𝑥, 𝑟〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))} |
12 | | canthwe.1 |
. . . . 5
⊢ 𝑂 = {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} |
13 | | df-xp 5044 |
. . . . 5
⊢
(𝒫 𝐴 ×
𝒫 (𝐴 × 𝐴)) = {〈𝑥, 𝑟〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))} |
14 | 11, 12, 13 | 3sstr4i 3607 |
. . . 4
⊢ 𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) |
15 | | pwexg 4776 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
16 | | sqxpexg 6861 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
17 | | pwexg 4776 |
. . . . . 6
⊢ ((𝐴 × 𝐴) ∈ V → 𝒫 (𝐴 × 𝐴) ∈ V) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V) |
19 | | xpexg 6858 |
. . . . 5
⊢
((𝒫 𝐴 ∈
V ∧ 𝒫 (𝐴
× 𝐴) ∈ V) →
(𝒫 𝐴 ×
𝒫 (𝐴 × 𝐴)) ∈ V) |
20 | 15, 18, 19 | syl2anc 691 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V) |
21 | | ssexg 4732 |
. . . 4
⊢ ((𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V) → 𝑂 ∈ V) |
22 | 14, 20, 21 | sylancr 694 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝑂 ∈ V) |
23 | | simpr 476 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
24 | 23 | snssd 4281 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → {𝑢} ⊆ 𝐴) |
25 | | 0ss 3924 |
. . . . . . . 8
⊢ ∅
⊆ ({𝑢} × {𝑢}) |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → ∅ ⊆ ({𝑢} × {𝑢})) |
27 | | rel0 5166 |
. . . . . . . 8
⊢ Rel
∅ |
28 | | br0 4631 |
. . . . . . . . 9
⊢ ¬
𝑢∅𝑢 |
29 | | wesn 5113 |
. . . . . . . . 9
⊢ (Rel
∅ → (∅ We {𝑢} ↔ ¬ 𝑢∅𝑢)) |
30 | 28, 29 | mpbiri 247 |
. . . . . . . 8
⊢ (Rel
∅ → ∅ We {𝑢}) |
31 | 27, 30 | mp1i 13 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → ∅ We {𝑢}) |
32 | | snex 4835 |
. . . . . . . 8
⊢ {𝑢} ∈ V |
33 | | 0ex 4718 |
. . . . . . . 8
⊢ ∅
∈ V |
34 | | simpl 472 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑥 = {𝑢}) |
35 | 34 | sseq1d 3595 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥 ⊆ 𝐴 ↔ {𝑢} ⊆ 𝐴)) |
36 | | simpr 476 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑟 = ∅) |
37 | 34 | sqxpeqd 5065 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥 × 𝑥) = ({𝑢} × {𝑢})) |
38 | 36, 37 | sseq12d 3597 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ ∅ ⊆ ({𝑢} × {𝑢}))) |
39 | | weeq2 5027 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑢} → (𝑟 We 𝑥 ↔ 𝑟 We {𝑢})) |
40 | | weeq1 5026 |
. . . . . . . . . 10
⊢ (𝑟 = ∅ → (𝑟 We {𝑢} ↔ ∅ We {𝑢})) |
41 | 39, 40 | sylan9bb 732 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 We 𝑥 ↔ ∅ We {𝑢})) |
42 | 35, 38, 41 | 3anbi123d 1391 |
. . . . . . . 8
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢}))) |
43 | 32, 33, 42 | opelopaba 4916 |
. . . . . . 7
⊢
(〈{𝑢},
∅〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢})) |
44 | 24, 26, 31, 43 | syl3anbrc 1239 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → 〈{𝑢}, ∅〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}) |
45 | 44, 12 | syl6eleqr 2699 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → 〈{𝑢}, ∅〉 ∈ 𝑂) |
46 | 45 | ex 449 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑢 ∈ 𝐴 → 〈{𝑢}, ∅〉 ∈ 𝑂)) |
47 | | eqid 2610 |
. . . . . . 7
⊢ ∅ =
∅ |
48 | | snex 4835 |
. . . . . . . 8
⊢ {𝑣} ∈ V |
49 | 48, 33 | opth2 4875 |
. . . . . . 7
⊢
(〈{𝑢},
∅〉 = 〈{𝑣},
∅〉 ↔ ({𝑢} =
{𝑣} ∧ ∅ =
∅)) |
50 | 47, 49 | mpbiran2 956 |
. . . . . 6
⊢
(〈{𝑢},
∅〉 = 〈{𝑣},
∅〉 ↔ {𝑢} =
{𝑣}) |
51 | | vex 3176 |
. . . . . . 7
⊢ 𝑢 ∈ V |
52 | | sneqbg 4314 |
. . . . . . 7
⊢ (𝑢 ∈ V → ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣)) |
53 | 51, 52 | ax-mp 5 |
. . . . . 6
⊢ ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣) |
54 | 50, 53 | bitri 263 |
. . . . 5
⊢
(〈{𝑢},
∅〉 = 〈{𝑣},
∅〉 ↔ 𝑢 =
𝑣) |
55 | 54 | 2a1i 12 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (〈{𝑢}, ∅〉 = 〈{𝑣}, ∅〉 ↔ 𝑢 = 𝑣))) |
56 | 46, 55 | dom2d 7882 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑂 ∈ V → 𝐴 ≼ 𝑂)) |
57 | 22, 56 | mpd 15 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝑂) |
58 | | eqid 2610 |
. . . . . . 7
⊢
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} |
59 | 58 | fpwwe2cbv 9331 |
. . . . . 6
⊢
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑤](𝑤𝑓(𝑟 ∩ (𝑤 × 𝑤))) = 𝑦))} |
60 | | eqid 2610 |
. . . . . 6
⊢ ∪ dom {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = ∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} |
61 | | eqid 2610 |
. . . . . 6
⊢ (◡({〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {(∪
dom {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))}) = (◡({〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {(∪
dom {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))}) |
62 | 12, 59, 60, 61 | canthwelem 9351 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ¬ 𝑓:𝑂–1-1→𝐴) |
63 | | f1of1 6049 |
. . . . 5
⊢ (𝑓:𝑂–1-1-onto→𝐴 → 𝑓:𝑂–1-1→𝐴) |
64 | 62, 63 | nsyl 134 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ¬ 𝑓:𝑂–1-1-onto→𝐴) |
65 | 64 | nexdv 1851 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ¬ ∃𝑓 𝑓:𝑂–1-1-onto→𝐴) |
66 | | ensym 7891 |
. . . 4
⊢ (𝐴 ≈ 𝑂 → 𝑂 ≈ 𝐴) |
67 | | bren 7850 |
. . . 4
⊢ (𝑂 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑂–1-1-onto→𝐴) |
68 | 66, 67 | sylib 207 |
. . 3
⊢ (𝐴 ≈ 𝑂 → ∃𝑓 𝑓:𝑂–1-1-onto→𝐴) |
69 | 65, 68 | nsyl 134 |
. 2
⊢ (𝐴 ∈ 𝑉 → ¬ 𝐴 ≈ 𝑂) |
70 | | brsdom 7864 |
. 2
⊢ (𝐴 ≺ 𝑂 ↔ (𝐴 ≼ 𝑂 ∧ ¬ 𝐴 ≈ 𝑂)) |
71 | 57, 69, 70 | sylanbrc 695 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝑂) |