MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem2 Structured version   Visualization version   GIF version

Theorem canthp1lem2 9354
Description: Lemma for canthp1 9355. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canthp1lem2.1 (𝜑 → 1𝑜𝐴)
canthp1lem2.2 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
canthp1lem2.3 (𝜑𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
canthp1lem2.4 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
canthp1lem2.5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
canthp1lem2.6 𝐵 = dom 𝑊
Assertion
Ref Expression
canthp1lem2 ¬ 𝜑
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐻,𝑟,𝑥,𝑦   𝜑,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟)   𝐺(𝑥,𝑦,𝑟)

Proof of Theorem canthp1lem2
StepHypRef Expression
1 canthp1lem2.1 . . . . . 6 (𝜑 → 1𝑜𝐴)
2 relsdom 7848 . . . . . . 7 Rel ≺
32brrelex2i 5083 . . . . . 6 (1𝑜𝐴𝐴 ∈ V)
41, 3syl 17 . . . . 5 (𝜑𝐴 ∈ V)
5 pwexg 4776 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
64, 5syl 17 . . . 4 (𝜑 → 𝒫 𝐴 ∈ V)
7 canthp1lem2.2 . . . 4 (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜))
8 f1oeng 7860 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜)) → 𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜))
96, 7, 8syl2anc 691 . . 3 (𝜑 → 𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜))
10 ensym 7891 . . 3 (𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
119, 10syl 17 . 2 (𝜑 → (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
12 canth2g 7999 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
134, 12syl 17 . . . . . . . . . 10 (𝜑𝐴 ≺ 𝒫 𝐴)
14 sdomen2 7990 . . . . . . . . . . 11 (𝒫 𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 +𝑐 1𝑜)))
159, 14syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ≺ 𝒫 𝐴𝐴 ≺ (𝐴 +𝑐 1𝑜)))
1613, 15mpbid 221 . . . . . . . . 9 (𝜑𝐴 ≺ (𝐴 +𝑐 1𝑜))
17 sdomnen 7870 . . . . . . . . 9 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
1816, 17syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
19 omelon 8426 . . . . . . . . . . . 12 ω ∈ On
20 onenon 8658 . . . . . . . . . . . 12 (ω ∈ On → ω ∈ dom card)
2119, 20ax-mp 5 . . . . . . . . . . 11 ω ∈ dom card
22 canthp1lem2.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴)
23 dff1o3 6056 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) ↔ (𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ∧ Fun 𝐹))
2423simprbi 479 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → Fun 𝐹)
257, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
26 f1ofo 6057 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
277, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
28 f1ofn 6051 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝒫 𝐴1-1-onto→(𝐴 +𝑐 1𝑜) → 𝐹 Fn 𝒫 𝐴)
29 fnresdm 5914 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹)
30 foeq1 6024 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ↔ 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜)))
317, 28, 29, 304syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ↔ 𝐹:𝒫 𝐴onto→(𝐴 +𝑐 1𝑜)))
3227, 31mpbird 246 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜))
33 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹𝐴) ∈ V
34 f1osng 6089 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
354, 33, 34sylancl 693 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)})
367, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 Fn 𝒫 𝐴)
37 pwidg 4121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
384, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ 𝒫 𝐴)
39 fnressn 6330 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 Fn 𝒫 𝐴𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
4036, 38, 39syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩})
41 f1oeq1 6040 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ {𝐴}) = {⟨𝐴, (𝐹𝐴)⟩} → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1-onto→{(𝐹𝐴)}))
4335, 42mpbird 246 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)})
44 f1ofo 6057 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)})
46 resdif 6070 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴onto→(𝐴 +𝑐 1𝑜) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)}))
4725, 32, 45, 46syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)}))
48 f1oco 6072 . . . . . . . . . . . . . . . . . . . 20 ((𝐺:((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})–1-1-onto𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐 1𝑜) ∖ {(𝐹𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
4922, 47, 48syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
50 resco 5556 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})))
51 f1oeq1 6040 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
5349, 52sylibr 223 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴)
54 f1of 6050 . . . . . . . . . . . . . . . . . 18 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴)
56 0elpw 4760 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ 𝒫 𝐴
5756a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴)
58 sdom0 7977 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 1𝑜 ≺ ∅
59 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ = 𝐴 → (1𝑜 ≺ ∅ ↔ 1𝑜𝐴))
6058, 59mtbii 315 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ = 𝐴 → ¬ 1𝑜𝐴)
6160necon2ai 2811 . . . . . . . . . . . . . . . . . . . . . 22 (1𝑜𝐴 → ∅ ≠ 𝐴)
621, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∅ ≠ 𝐴)
6362ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴)
64 eldifsn 4260 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴))
6557, 63, 64sylanbrc 695 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴}))
66 simplr 788 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)
67 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴)
6867neqned 2789 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
69 eldifsn 4260 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐴))
7066, 68, 69sylanbrc 695 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}))
7165, 70ifclda 4070 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴}))
72 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
7371, 72fmptd 6292 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}))
74 fco 5971 . . . . . . . . . . . . . . . . 17 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴})) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
7555, 73, 74syl2anc 691 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴)
76 frn 5966 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
7773, 76syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}))
78 cores 5555 . . . . . . . . . . . . . . . . . . 19 (ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
7977, 78syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))))
80 canthp1lem2.4 . . . . . . . . . . . . . . . . . 18 𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
8179, 80syl6eqr 2662 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻)
8281feq1d 5943 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴𝐴𝐻:𝒫 𝐴𝐴))
8375, 82mpbid 221 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝒫 𝐴𝐴)
84 inss1 3795 . . . . . . . . . . . . . . . 16 (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴
8584a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴)
86 canthp1lem2.5 . . . . . . . . . . . . . . . 16 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}
87 canthp1lem2.6 . . . . . . . . . . . . . . . 16 𝐵 = dom 𝑊
88 eqid 2610 . . . . . . . . . . . . . . . 16 ((𝑊𝐵) “ {(𝐻𝐵)}) = ((𝑊𝐵) “ {(𝐻𝐵)})
8986, 87, 88canth4 9348 . . . . . . . . . . . . . . 15 ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
904, 83, 85, 89syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵 ∧ (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)}))))
9190simp1d 1066 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
9290simp2d 1067 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐵)
9392pssned 3667 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐵)
9493necomd 2837 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}))
9590simp3d 1068 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐻𝐵) = (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})))
9680fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵)
9780fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻‘((𝑊𝐵) “ {(𝐻𝐵)})) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)}))
9895, 96, 973eqtr3g 2667 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})))
99 elpw2g 4754 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ V → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1004, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
10191, 100mpbird 246 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ 𝒫 𝐴)
102 fvco3 6185 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) ∧ 𝐵 ∈ 𝒫 𝐴) → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
10373, 101, 102syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)))
10492pssssd 3666 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵)
105104, 91sstrd 3578 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴)
106 elpw2g 4754 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ V → (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴))
1074, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐴))
108105, 107mpbird 246 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
109 fvco3 6185 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
11073, 108, 109syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
11198, 103, 1103eqtr3d 2652 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
112111adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))))
113 ifcl 4080 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ 𝒫 𝐴𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
11456, 101, 113sylancr 694 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴)
115 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
116 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐵𝑥 = 𝐵)
117115, 116ifbieq2d 4061 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵))
118117, 72fvmptg 6189 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ 𝒫 𝐴 ∧ if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
119101, 114, 118syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵))
120 pssne 3665 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵𝐴𝐵𝐴)
121120neneqd 2787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
122121iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵)
123119, 122sylan9eq 2664 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵)
124123fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺𝐹)‘𝐵))
125 ifcl 4080 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∅ ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
12656, 108, 125sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴)
127 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → (𝑥 = 𝐴 ↔ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴))
128 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → 𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}))
129127, 128ifbieq2d 4061 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ((𝑊𝐵) “ {(𝐻𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
130129, 72fvmptg 6189 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
131108, 126, 130syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
132131adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})))
133 sspsstr 3674 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑊𝐵) “ {(𝐻𝐵)}) ⊆ 𝐵𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
134104, 133sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ⊊ 𝐴)
135134pssned 3667 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴)
136135neneqd 2787 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐵𝐴) → ¬ ((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴)
137136iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐵𝐴) → if(((𝑊𝐵) “ {(𝐻𝐵)}) = 𝐴, ∅, ((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
138132, 137eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝑊𝐵) “ {(𝐻𝐵)}))
139138fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘((𝑊𝐵) “ {(𝐻𝐵)}))) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
140112, 124, 1393eqtr3d 2652 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹)‘𝐵) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
141101, 120anim12i 588 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
142 eldifsn 4260 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
143141, 142sylibr 223 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}))
144 fvres 6117 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
145143, 144syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺𝐹)‘𝐵))
146108adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴)
147 eldifsn 4260 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ 𝒫 𝐴 ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ≠ 𝐴))
148146, 135, 147sylanbrc 695 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐵𝐴) → ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))
149 fvres 6117 . . . . . . . . . . . . . . . . . . . 20 (((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
150148, 149syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) = ((𝐺𝐹)‘((𝑊𝐵) “ {(𝐻𝐵)})))
151140, 145, 1503eqtr4d 2654 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})))
152 f1of1 6049 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto𝐴 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
15353, 152syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
154153adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐵𝐴) → ((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴)
155 f1fveq 6420 . . . . . . . . . . . . . . . . . . 19 ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ ((𝑊𝐵) “ {(𝐻𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
156154, 143, 148, 155syl12anc 1316 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐵𝐴) → ((((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘((𝑊𝐵) “ {(𝐻𝐵)})) ↔ 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
157151, 156mpbid 221 . . . . . . . . . . . . . . . . 17 ((𝜑𝐵𝐴) → 𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)}))
158157ex 449 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝐴𝐵 = ((𝑊𝐵) “ {(𝐻𝐵)})))
159158necon3ad 2795 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ≠ ((𝑊𝐵) “ {(𝐻𝐵)}) → ¬ 𝐵𝐴))
16094, 159mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐵𝐴)
161 npss 3679 . . . . . . . . . . . . . 14 𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
162160, 161sylib 207 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴𝐵 = 𝐴))
16391, 162mpd 15 . . . . . . . . . . . 12 (𝜑𝐵 = 𝐴)
164 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 𝐵 = 𝐵
165 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (𝑊𝐵) = (𝑊𝐵)
166164, 165pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
16784sseli 3564 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴)
168 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . 21 ((𝐻:𝒫 𝐴𝐴𝑥 ∈ 𝒫 𝐴) → (𝐻𝑥) ∈ 𝐴)
16983, 167, 168syl2an 493 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻𝑥) ∈ 𝐴)
17086, 4, 169, 87fpwwe 9347 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
171166, 170mpbiri 247 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵𝑊(𝑊𝐵) ∧ (𝐻𝐵) ∈ 𝐵))
172171simpld 474 . . . . . . . . . . . . . . . . 17 (𝜑𝐵𝑊(𝑊𝐵))
17386, 4fpwwelem 9346 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
174172, 173mpbid 221 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
175174simprd 478 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐻‘((𝑊𝐵) “ {𝑦})) = 𝑦))
176175simpld 474 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝐵) We 𝐵)
177 fvex 6113 . . . . . . . . . . . . . . 15 (𝑊𝐵) ∈ V
178 weeq1 5026 . . . . . . . . . . . . . . 15 (𝑟 = (𝑊𝐵) → (𝑟 We 𝐵 ↔ (𝑊𝐵) We 𝐵))
179177, 178spcev 3273 . . . . . . . . . . . . . 14 ((𝑊𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵)
180176, 179syl 17 . . . . . . . . . . . . 13 (𝜑 → ∃𝑟 𝑟 We 𝐵)
181 ween 8741 . . . . . . . . . . . . 13 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
182180, 181sylibr 223 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom card)
183163, 182eqeltrrd 2689 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom card)
184 domtri2 8698 . . . . . . . . . . 11 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
18521, 183, 184sylancr 694 . . . . . . . . . 10 (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
186 infcda1 8898 . . . . . . . . . 10 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≈ 𝐴)
187185, 186syl6bir 243 . . . . . . . . 9 (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 +𝑐 1𝑜) ≈ 𝐴))
188 ensym 7891 . . . . . . . . 9 ((𝐴 +𝑐 1𝑜) ≈ 𝐴𝐴 ≈ (𝐴 +𝑐 1𝑜))
189187, 188syl6 34 . . . . . . . 8 (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 +𝑐 1𝑜)))
19018, 189mt3d 139 . . . . . . 7 (𝜑𝐴 ≺ ω)
191 2onn 7607 . . . . . . . 8 2𝑜 ∈ ω
192 nnsdom 8434 . . . . . . . 8 (2𝑜 ∈ ω → 2𝑜 ≺ ω)
193191, 192ax-mp 5 . . . . . . 7 2𝑜 ≺ ω
194 cdafi 8895 . . . . . . 7 ((𝐴 ≺ ω ∧ 2𝑜 ≺ ω) → (𝐴 +𝑐 2𝑜) ≺ ω)
195190, 193, 194sylancl 693 . . . . . 6 (𝜑 → (𝐴 +𝑐 2𝑜) ≺ ω)
196 isfinite 8432 . . . . . 6 ((𝐴 +𝑐 2𝑜) ∈ Fin ↔ (𝐴 +𝑐 2𝑜) ≺ ω)
197195, 196sylibr 223 . . . . 5 (𝜑 → (𝐴 +𝑐 2𝑜) ∈ Fin)
198 sssucid 5719 . . . . . . . . . 10 1𝑜 ⊆ suc 1𝑜
199 df-2o 7448 . . . . . . . . . 10 2𝑜 = suc 1𝑜
200198, 199sseqtr4i 3601 . . . . . . . . 9 1𝑜 ⊆ 2𝑜
201 xpss1 5151 . . . . . . . . 9 (1𝑜 ⊆ 2𝑜 → (1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜}))
202200, 201ax-mp 5 . . . . . . . 8 (1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜})
203 unss2 3746 . . . . . . . 8 ((1𝑜 × {1𝑜}) ⊆ (2𝑜 × {1𝑜}) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
204202, 203mp1i 13 . . . . . . 7 (𝜑 → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
205 ssun2 3739 . . . . . . . . 9 (2𝑜 × {1𝑜}) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))
206 1onn 7606 . . . . . . . . . . . . 13 1𝑜 ∈ ω
207206elexi 3186 . . . . . . . . . . . 12 1𝑜 ∈ V
208207sucid 5721 . . . . . . . . . . 11 1𝑜 ∈ suc 1𝑜
209208, 199eleqtrri 2687 . . . . . . . . . 10 1𝑜 ∈ 2𝑜
210207snid 4155 . . . . . . . . . 10 1𝑜 ∈ {1𝑜}
211 opelxpi 5072 . . . . . . . . . 10 ((1𝑜 ∈ 2𝑜 ∧ 1𝑜 ∈ {1𝑜}) → ⟨1𝑜, 1𝑜⟩ ∈ (2𝑜 × {1𝑜}))
212209, 210, 211mp2an 704 . . . . . . . . 9 ⟨1𝑜, 1𝑜⟩ ∈ (2𝑜 × {1𝑜})
213205, 212sselii 3565 . . . . . . . 8 ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))
214 1n0 7462 . . . . . . . . . . . 12 1𝑜 ≠ ∅
215214neii 2784 . . . . . . . . . . 11 ¬ 1𝑜 = ∅
216 opelxp2 5075 . . . . . . . . . . . 12 (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 ∈ {∅})
217 elsni 4142 . . . . . . . . . . . 12 (1𝑜 ∈ {∅} → 1𝑜 = ∅)
218216, 217syl 17 . . . . . . . . . . 11 (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 = ∅)
219215, 218mto 187 . . . . . . . . . 10 ¬ ⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅})
220 nnord 6965 . . . . . . . . . . . 12 (1𝑜 ∈ ω → Ord 1𝑜)
221 ordirr 5658 . . . . . . . . . . . 12 (Ord 1𝑜 → ¬ 1𝑜 ∈ 1𝑜)
222206, 220, 221mp2b 10 . . . . . . . . . . 11 ¬ 1𝑜 ∈ 1𝑜
223 opelxp1 5074 . . . . . . . . . . 11 (⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}) → 1𝑜 ∈ 1𝑜)
224222, 223mto 187 . . . . . . . . . 10 ¬ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜})
225219, 224pm3.2ni 895 . . . . . . . . 9 ¬ (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) ∨ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}))
226 elun 3715 . . . . . . . . 9 (⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ↔ (⟨1𝑜, 1𝑜⟩ ∈ (𝐴 × {∅}) ∨ ⟨1𝑜, 1𝑜⟩ ∈ (1𝑜 × {1𝑜})))
227225, 226mtbir 312 . . . . . . . 8 ¬ ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))
228 ssnelpss 3680 . . . . . . . 8 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) → ((⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) ∧ ¬ ⟨1𝑜, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))))
229213, 227, 228mp2ani 710 . . . . . . 7 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})) → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
230204, 229syl 17 . . . . . 6 (𝜑 → ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
231 cdaval 8875 . . . . . . . 8 ((𝐴 ∈ V ∧ 1𝑜 ∈ ω) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
2324, 206, 231sylancl 693 . . . . . . 7 (𝜑 → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
233 cdaval 8875 . . . . . . . 8 ((𝐴 ∈ V ∧ 2𝑜 ∈ ω) → (𝐴 +𝑐 2𝑜) = ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
2344, 191, 233sylancl 693 . . . . . . 7 (𝜑 → (𝐴 +𝑐 2𝑜) = ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜})))
235232, 234psseq12d 3663 . . . . . 6 (𝜑 → ((𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜) ↔ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪ (2𝑜 × {1𝑜}))))
236230, 235mpbird 246 . . . . 5 (𝜑 → (𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜))
237 php3 8031 . . . . 5 (((𝐴 +𝑐 2𝑜) ∈ Fin ∧ (𝐴 +𝑐 1𝑜) ⊊ (𝐴 +𝑐 2𝑜)) → (𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜))
238197, 236, 237syl2anc 691 . . . 4 (𝜑 → (𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜))
239 canthp1lem1 9353 . . . . 5 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
2401, 239syl 17 . . . 4 (𝜑 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
241 sdomdomtr 7978 . . . 4 (((𝐴 +𝑐 1𝑜) ≺ (𝐴 +𝑐 2𝑜) ∧ (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴) → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
242238, 240, 241syl2anc 691 . . 3 (𝜑 → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
243 sdomnen 7870 . . 3 ((𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴 → ¬ (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
244242, 243syl 17 . 2 (𝜑 → ¬ (𝐴 +𝑐 1𝑜) ≈ 𝒫 𝐴)
24511, 244pm2.65i 184 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  wpss 3541  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125  cop 4131   cuni 4372   class class class wbr 4583  {copab 4642  cmpt 4643   We wwe 4996   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042  Ord word 5639  Oncon0 5640  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  ωcom 6957  1𝑜c1o 7440  2𝑜c2o 7441  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  cardccrd 8644   +𝑐 ccda 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-cda 8873
This theorem is referenced by:  canthp1  9355
  Copyright terms: Public domain W3C validator