Proof of Theorem canthp1lem2
Step | Hyp | Ref
| Expression |
1 | | canthp1lem2.1 |
. . . . . 6
⊢ (𝜑 → 1𝑜
≺ 𝐴) |
2 | | relsdom 7848 |
. . . . . . 7
⊢ Rel
≺ |
3 | 2 | brrelex2i 5083 |
. . . . . 6
⊢
(1𝑜 ≺ 𝐴 → 𝐴 ∈ V) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
5 | | pwexg 4776 |
. . . . 5
⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) |
6 | 4, 5 | syl 17 |
. . . 4
⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
7 | | canthp1lem2.2 |
. . . 4
⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→(𝐴 +𝑐
1𝑜)) |
8 | | f1oeng 7860 |
. . . 4
⊢
((𝒫 𝐴 ∈
V ∧ 𝐹:𝒫 𝐴–1-1-onto→(𝐴 +𝑐
1𝑜)) → 𝒫 𝐴 ≈ (𝐴 +𝑐
1𝑜)) |
9 | 6, 7, 8 | syl2anc 691 |
. . 3
⊢ (𝜑 → 𝒫 𝐴 ≈ (𝐴 +𝑐
1𝑜)) |
10 | | ensym 7891 |
. . 3
⊢
(𝒫 𝐴 ≈
(𝐴 +𝑐
1𝑜) → (𝐴 +𝑐
1𝑜) ≈ 𝒫 𝐴) |
11 | 9, 10 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 +𝑐
1𝑜) ≈ 𝒫 𝐴) |
12 | | canth2g 7999 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) |
13 | 4, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≺ 𝒫 𝐴) |
14 | | sdomen2 7990 |
. . . . . . . . . . 11
⊢
(𝒫 𝐴 ≈
(𝐴 +𝑐
1𝑜) → (𝐴 ≺ 𝒫 𝐴 ↔ 𝐴 ≺ (𝐴 +𝑐
1𝑜))) |
15 | 9, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ≺ 𝒫 𝐴 ↔ 𝐴 ≺ (𝐴 +𝑐
1𝑜))) |
16 | 13, 15 | mpbid 221 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≺ (𝐴 +𝑐
1𝑜)) |
17 | | sdomnen 7870 |
. . . . . . . . 9
⊢ (𝐴 ≺ (𝐴 +𝑐
1𝑜) → ¬ 𝐴 ≈ (𝐴 +𝑐
1𝑜)) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝐴 ≈ (𝐴 +𝑐
1𝑜)) |
19 | | omelon 8426 |
. . . . . . . . . . . 12
⊢ ω
∈ On |
20 | | onenon 8658 |
. . . . . . . . . . . 12
⊢ (ω
∈ On → ω ∈ dom card) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ω
∈ dom card |
22 | | canthp1lem2.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺:((𝐴 +𝑐
1𝑜) ∖ {(𝐹‘𝐴)})–1-1-onto→𝐴) |
23 | | dff1o3 6056 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝒫 𝐴–1-1-onto→(𝐴 +𝑐
1𝑜) ↔ (𝐹:𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜) ∧ Fun ◡𝐹)) |
24 | 23 | simprbi 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹:𝒫 𝐴–1-1-onto→(𝐴 +𝑐
1𝑜) → Fun ◡𝐹) |
25 | 7, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → Fun ◡𝐹) |
26 | | f1ofo 6057 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝒫 𝐴–1-1-onto→(𝐴 +𝑐
1𝑜) → 𝐹:𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜)) |
27 | 7, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜)) |
28 | | f1ofn 6051 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝒫 𝐴–1-1-onto→(𝐴 +𝑐
1𝑜) → 𝐹 Fn 𝒫 𝐴) |
29 | | fnresdm 5914 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Fn 𝒫 𝐴 → (𝐹 ↾ 𝒫 𝐴) = 𝐹) |
30 | | foeq1 6024 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ↾ 𝒫 𝐴) = 𝐹 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜) ↔ 𝐹:𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜))) |
31 | 7, 28, 29, 30 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝐹 ↾ 𝒫 𝐴):𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜) ↔ 𝐹:𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜))) |
32 | 27, 31 | mpbird 246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜)) |
33 | | fvex 6113 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹‘𝐴) ∈ V |
34 | | f1osng 6089 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ V ∧ (𝐹‘𝐴) ∈ V) → {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1-onto→{(𝐹‘𝐴)}) |
35 | 4, 33, 34 | sylancl 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1-onto→{(𝐹‘𝐴)}) |
36 | 7, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹 Fn 𝒫 𝐴) |
37 | | pwidg 4121 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) |
38 | 4, 37 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐴) |
39 | | fnressn 6330 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ 𝐴 ∈ 𝒫 𝐴) → (𝐹 ↾ {𝐴}) = {〈𝐴, (𝐹‘𝐴)〉}) |
40 | 36, 38, 39 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐹 ↾ {𝐴}) = {〈𝐴, (𝐹‘𝐴)〉}) |
41 | | f1oeq1 6040 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹 ↾ {𝐴}) = {〈𝐴, (𝐹‘𝐴)〉} → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹‘𝐴)} ↔ {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1-onto→{(𝐹‘𝐴)})) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹‘𝐴)} ↔ {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1-onto→{(𝐹‘𝐴)})) |
43 | 35, 42 | mpbird 246 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹‘𝐴)}) |
44 | | f1ofo 6057 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ↾ {𝐴}):{𝐴}–1-1-onto→{(𝐹‘𝐴)} → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹‘𝐴)}) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹‘𝐴)}) |
46 | | resdif 6070 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝒫 𝐴):𝒫 𝐴–onto→(𝐴 +𝑐
1𝑜) ∧ (𝐹 ↾ {𝐴}):{𝐴}–onto→{(𝐹‘𝐴)}) → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐
1𝑜) ∖ {(𝐹‘𝐴)})) |
47 | 25, 32, 45, 46 | syl3anc 1318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐
1𝑜) ∖ {(𝐹‘𝐴)})) |
48 | | f1oco 6072 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺:((𝐴 +𝑐
1𝑜) ∖ {(𝐹‘𝐴)})–1-1-onto→𝐴 ∧ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→((𝐴 +𝑐
1𝑜) ∖ {(𝐹‘𝐴)})) → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴) |
49 | 22, 47, 48 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴) |
50 | | resco 5556 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) |
51 | | f1oeq1 6040 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) = (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴)) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴 ↔ (𝐺 ∘ (𝐹 ↾ (𝒫 𝐴 ∖ {𝐴}))):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴) |
53 | 49, 52 | sylibr 223 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴) |
54 | | f1of 6050 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴) |
56 | | 0elpw 4760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∅
∈ 𝒫 𝐴 |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ 𝒫 𝐴) |
58 | | sdom0 7977 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬
1𝑜 ≺ ∅ |
59 | | breq2 4587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∅
= 𝐴 →
(1𝑜 ≺ ∅ ↔ 1𝑜 ≺
𝐴)) |
60 | 58, 59 | mtbii 315 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
= 𝐴 → ¬
1𝑜 ≺ 𝐴) |
61 | 60 | necon2ai 2811 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1𝑜 ≺ 𝐴 → ∅ ≠ 𝐴) |
62 | 1, 61 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∅ ≠ 𝐴) |
63 | 62 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ≠ 𝐴) |
64 | | eldifsn 4260 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
∈ (𝒫 𝐴 ∖
{𝐴}) ↔ (∅ ∈
𝒫 𝐴 ∧ ∅
≠ 𝐴)) |
65 | 57, 63, 64 | sylanbrc 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ 𝑥 = 𝐴) → ∅ ∈ (𝒫 𝐴 ∖ {𝐴})) |
66 | | simplr 788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴) |
67 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → ¬ 𝑥 = 𝐴) |
68 | 67 | neqned 2789 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ≠ 𝐴) |
69 | | eldifsn 4260 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ 𝐴)) |
70 | 66, 68, 69 | sylanbrc 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝒫 𝐴 ∖ {𝐴})) |
71 | 65, 70 | ifclda 4070 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → if(𝑥 = 𝐴, ∅, 𝑥) ∈ (𝒫 𝐴 ∖ {𝐴})) |
72 | | eqid 2610 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) |
73 | 71, 72 | fmptd 6292 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴})) |
74 | | fco 5971 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})⟶𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴})) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴⟶𝐴) |
75 | 55, 73, 74 | syl2anc 691 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴⟶𝐴) |
76 | | frn 5966 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴})) |
77 | 73, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴})) |
78 | | cores 5555 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ran
(𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) ⊆ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = ((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))) |
80 | | canthp1lem2.4 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = ((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) |
81 | 79, 80 | syl6eqr 2662 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) = 𝐻) |
82 | 81 | feq1d 5943 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))):𝒫 𝐴⟶𝐴 ↔ 𝐻:𝒫 𝐴⟶𝐴)) |
83 | 75, 82 | mpbid 221 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐻:𝒫 𝐴⟶𝐴) |
84 | | inss1 3795 |
. . . . . . . . . . . . . . . 16
⊢
(𝒫 𝐴 ∩
dom card) ⊆ 𝒫 𝐴 |
85 | 84 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝒫 𝐴 ∩ dom card) ⊆
𝒫 𝐴) |
86 | | canthp1lem2.5 |
. . . . . . . . . . . . . . . 16
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐻‘(◡𝑟 “ {𝑦})) = 𝑦))} |
87 | | canthp1lem2.6 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = ∪
dom 𝑊 |
88 | | eqid 2610 |
. . . . . . . . . . . . . . . 16
⊢ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) |
89 | 86, 87, 88 | canth4 9348 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ V ∧ 𝐻:𝒫 𝐴⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝒫 𝐴) → (𝐵 ⊆ 𝐴 ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐵 ∧ (𝐻‘𝐵) = (𝐻‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
90 | 4, 83, 85, 89 | syl3anc 1318 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 ⊆ 𝐴 ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐵 ∧ (𝐻‘𝐵) = (𝐻‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
91 | 90 | simp1d 1066 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
92 | 90 | simp2d 1067 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐵) |
93 | 92 | pssned 3667 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ≠ 𝐵) |
94 | 93 | necomd 2837 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ≠ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
95 | 90 | simp3d 1068 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐻‘𝐵) = (𝐻‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
96 | 80 | fveq1i 6104 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐻‘𝐵) = (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) |
97 | 80 | fveq1i 6104 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐻‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
98 | 95, 96, 97 | 3eqtr3g 2667 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
99 | | elpw2g 4754 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∈ V → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
100 | 4, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
101 | 91, 100 | mpbird 246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
102 | | fvco3 6185 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) ∧ 𝐵 ∈ 𝒫 𝐴) → (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵))) |
103 | 73, 101, 102 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘𝐵) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵))) |
104 | 92 | pssssd 3666 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊆ 𝐵) |
105 | 104, 91 | sstrd 3578 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊆ 𝐴) |
106 | | elpw2g 4754 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∈ V → ((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴 ↔ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊆ 𝐴)) |
107 | 4, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴 ↔ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊆ 𝐴)) |
108 | 105, 107 | mpbird 246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴) |
109 | | fvco3 6185 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)):𝒫 𝐴⟶(𝒫 𝐴 ∖ {𝐴}) ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴) → (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
110 | 73, 108, 109 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
111 | 98, 103, 110 | 3eqtr3d 2652 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
112 | 111 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})))) |
113 | | ifcl 4080 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((∅
∈ 𝒫 𝐴 ∧
𝐵 ∈ 𝒫 𝐴) → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴) |
114 | 56, 101, 113 | sylancr 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴) |
115 | | eqeq1 2614 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝐵 → (𝑥 = 𝐴 ↔ 𝐵 = 𝐴)) |
116 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) |
117 | 115, 116 | ifbieq2d 4061 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐴, ∅, 𝑥) = if(𝐵 = 𝐴, ∅, 𝐵)) |
118 | 117, 72 | fvmptg 6189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐵 ∈ 𝒫 𝐴 ∧ if(𝐵 = 𝐴, ∅, 𝐵) ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵)) |
119 | 101, 114,
118 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = if(𝐵 = 𝐴, ∅, 𝐵)) |
120 | | pssne 3665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐵 ⊊ 𝐴 → 𝐵 ≠ 𝐴) |
121 | 120 | neneqd 2787 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐵 ⊊ 𝐴 → ¬ 𝐵 = 𝐴) |
122 | 121 | iffalsed 4047 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ⊊ 𝐴 → if(𝐵 = 𝐴, ∅, 𝐵) = 𝐵) |
123 | 119, 122 | sylan9eq 2664 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵) = 𝐵) |
124 | 123 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘𝐵)) = ((𝐺 ∘ 𝐹)‘𝐵)) |
125 | | ifcl 4080 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((∅
∈ 𝒫 𝐴 ∧
(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴) → if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ∈ 𝒫 𝐴) |
126 | 56, 108, 125 | sylancr 694 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ∈ 𝒫 𝐴) |
127 | | eqeq1 2614 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) → (𝑥 = 𝐴 ↔ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴)) |
128 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) → 𝑥 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
129 | 127, 128 | ifbieq2d 4061 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) → if(𝑥 = 𝐴, ∅, 𝑥) = if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
130 | 129, 72 | fvmptg 6189 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴 ∧ if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
131 | 108, 126,
130 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
132 | 131 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
133 | | sspsstr 3674 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐴) |
134 | 104, 133 | sylan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ⊊ 𝐴) |
135 | 134 | pssned 3667 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ≠ 𝐴) |
136 | 135 | neneqd 2787 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ¬ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴) |
137 | 136 | iffalsed 4047 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → if((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) = 𝐴, ∅, (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
138 | 132, 137 | eqtrd 2644 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
139 | 138 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹)‘((𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) = ((𝐺 ∘ 𝐹)‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
140 | 112, 124,
139 | 3eqtr3d 2652 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹)‘𝐵) = ((𝐺 ∘ 𝐹)‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
141 | 101, 120 | anim12i 588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (𝐵 ∈ 𝒫 𝐴 ∧ 𝐵 ≠ 𝐴)) |
142 | | eldifsn 4260 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ (𝐵 ∈ 𝒫 𝐴 ∧ 𝐵 ≠ 𝐴)) |
143 | 141, 142 | sylibr 223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ (𝒫 𝐴 ∖ {𝐴})) |
144 | | fvres 6117 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺 ∘ 𝐹)‘𝐵)) |
145 | 143, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = ((𝐺 ∘ 𝐹)‘𝐵)) |
146 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴) |
147 | | eldifsn 4260 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) ↔ ((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ 𝒫 𝐴 ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ≠ 𝐴)) |
148 | 146, 135,
147 | sylanbrc 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴})) |
149 | | fvres 6117 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = ((𝐺 ∘ 𝐹)‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
150 | 148, 149 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) = ((𝐺 ∘ 𝐹)‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
151 | 140, 145,
150 | 3eqtr4d 2654 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
152 | | f1of1 6049 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1-onto→𝐴 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1→𝐴) |
153 | 53, 152 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1→𝐴) |
154 | 153 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1→𝐴) |
155 | | f1fveq 6420 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴})):(𝒫 𝐴 ∖ {𝐴})–1-1→𝐴 ∧ (𝐵 ∈ (𝒫 𝐴 ∖ {𝐴}) ∧ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) ∈ (𝒫 𝐴 ∖ {𝐴}))) → ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ↔ 𝐵 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
156 | 154, 143,
148, 155 | syl12anc 1316 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → ((((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘𝐵) = (((𝐺 ∘ 𝐹) ↾ (𝒫 𝐴 ∖ {𝐴}))‘(◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) ↔ 𝐵 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
157 | 151, 156 | mpbid 221 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐵 ⊊ 𝐴) → 𝐵 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)})) |
158 | 157 | ex 449 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 ⊊ 𝐴 → 𝐵 = (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}))) |
159 | 158 | necon3ad 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 ≠ (◡(𝑊‘𝐵) “ {(𝐻‘𝐵)}) → ¬ 𝐵 ⊊ 𝐴)) |
160 | 94, 159 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝐵 ⊊ 𝐴) |
161 | | npss 3679 |
. . . . . . . . . . . . . 14
⊢ (¬
𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 → 𝐵 = 𝐴)) |
162 | 160, 161 | sylib 207 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 ⊆ 𝐴 → 𝐵 = 𝐴)) |
163 | 91, 162 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = 𝐴) |
164 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐵 = 𝐵 |
165 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊‘𝐵) = (𝑊‘𝐵) |
166 | 164, 165 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 = 𝐵 ∧ (𝑊‘𝐵) = (𝑊‘𝐵)) |
167 | 84 | sseli 3564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ dom card) → 𝑥 ∈ 𝒫 𝐴) |
168 | | ffvelrn 6265 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐻:𝒫 𝐴⟶𝐴 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝐻‘𝑥) ∈ 𝐴) |
169 | 83, 167, 168 | syl2an 493 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐻‘𝑥) ∈ 𝐴) |
170 | 86, 4, 169, 87 | fpwwe 9347 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐵𝑊(𝑊‘𝐵) ∧ (𝐻‘𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊‘𝐵) = (𝑊‘𝐵)))) |
171 | 166, 170 | mpbiri 247 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐵𝑊(𝑊‘𝐵) ∧ (𝐻‘𝐵) ∈ 𝐵)) |
172 | 171 | simpld 474 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵𝑊(𝑊‘𝐵)) |
173 | 86, 4 | fpwwelem 9346 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵𝑊(𝑊‘𝐵) ↔ ((𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐻‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦)))) |
174 | 172, 173 | mpbid 221 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐻‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦))) |
175 | 174 | simprd 478 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐻‘(◡(𝑊‘𝐵) “ {𝑦})) = 𝑦)) |
176 | 175 | simpld 474 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊‘𝐵) We 𝐵) |
177 | | fvex 6113 |
. . . . . . . . . . . . . . 15
⊢ (𝑊‘𝐵) ∈ V |
178 | | weeq1 5026 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (𝑊‘𝐵) → (𝑟 We 𝐵 ↔ (𝑊‘𝐵) We 𝐵)) |
179 | 177, 178 | spcev 3273 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝐵) We 𝐵 → ∃𝑟 𝑟 We 𝐵) |
180 | 176, 179 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑟 𝑟 We 𝐵) |
181 | | ween 8741 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ dom card ↔
∃𝑟 𝑟 We 𝐵) |
182 | 180, 181 | sylibr 223 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ dom card) |
183 | 163, 182 | eqeltrrd 2689 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ dom card) |
184 | | domtri2 8698 |
. . . . . . . . . . 11
⊢ ((ω
∈ dom card ∧ 𝐴
∈ dom card) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)) |
185 | 21, 183, 184 | sylancr 694 |
. . . . . . . . . 10
⊢ (𝜑 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)) |
186 | | infcda1 8898 |
. . . . . . . . . 10
⊢ (ω
≼ 𝐴 → (𝐴 +𝑐
1𝑜) ≈ 𝐴) |
187 | 185, 186 | syl6bir 243 |
. . . . . . . . 9
⊢ (𝜑 → (¬ 𝐴 ≺ ω → (𝐴 +𝑐
1𝑜) ≈ 𝐴)) |
188 | | ensym 7891 |
. . . . . . . . 9
⊢ ((𝐴 +𝑐
1𝑜) ≈ 𝐴 → 𝐴 ≈ (𝐴 +𝑐
1𝑜)) |
189 | 187, 188 | syl6 34 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝐴 ≺ ω → 𝐴 ≈ (𝐴 +𝑐
1𝑜))) |
190 | 18, 189 | mt3d 139 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≺ ω) |
191 | | 2onn 7607 |
. . . . . . . 8
⊢
2𝑜 ∈ ω |
192 | | nnsdom 8434 |
. . . . . . . 8
⊢
(2𝑜 ∈ ω → 2𝑜
≺ ω) |
193 | 191, 192 | ax-mp 5 |
. . . . . . 7
⊢
2𝑜 ≺ ω |
194 | | cdafi 8895 |
. . . . . . 7
⊢ ((𝐴 ≺ ω ∧
2𝑜 ≺ ω) → (𝐴 +𝑐
2𝑜) ≺ ω) |
195 | 190, 193,
194 | sylancl 693 |
. . . . . 6
⊢ (𝜑 → (𝐴 +𝑐
2𝑜) ≺ ω) |
196 | | isfinite 8432 |
. . . . . 6
⊢ ((𝐴 +𝑐
2𝑜) ∈ Fin ↔ (𝐴 +𝑐
2𝑜) ≺ ω) |
197 | 195, 196 | sylibr 223 |
. . . . 5
⊢ (𝜑 → (𝐴 +𝑐
2𝑜) ∈ Fin) |
198 | | sssucid 5719 |
. . . . . . . . . 10
⊢
1𝑜 ⊆ suc 1𝑜 |
199 | | df-2o 7448 |
. . . . . . . . . 10
⊢
2𝑜 = suc 1𝑜 |
200 | 198, 199 | sseqtr4i 3601 |
. . . . . . . . 9
⊢
1𝑜 ⊆ 2𝑜 |
201 | | xpss1 5151 |
. . . . . . . . 9
⊢
(1𝑜 ⊆ 2𝑜 →
(1𝑜 × {1𝑜}) ⊆
(2𝑜 × {1𝑜})) |
202 | 200, 201 | ax-mp 5 |
. . . . . . . 8
⊢
(1𝑜 × {1𝑜}) ⊆
(2𝑜 × {1𝑜}) |
203 | | unss2 3746 |
. . . . . . . 8
⊢
((1𝑜 × {1𝑜}) ⊆
(2𝑜 × {1𝑜}) → ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜}))) |
204 | 202, 203 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜}))) |
205 | | ssun2 3739 |
. . . . . . . . 9
⊢
(2𝑜 × {1𝑜}) ⊆ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜})) |
206 | | 1onn 7606 |
. . . . . . . . . . . . 13
⊢
1𝑜 ∈ ω |
207 | 206 | elexi 3186 |
. . . . . . . . . . . 12
⊢
1𝑜 ∈ V |
208 | 207 | sucid 5721 |
. . . . . . . . . . 11
⊢
1𝑜 ∈ suc 1𝑜 |
209 | 208, 199 | eleqtrri 2687 |
. . . . . . . . . 10
⊢
1𝑜 ∈ 2𝑜 |
210 | 207 | snid 4155 |
. . . . . . . . . 10
⊢
1𝑜 ∈ {1𝑜} |
211 | | opelxpi 5072 |
. . . . . . . . . 10
⊢
((1𝑜 ∈ 2𝑜 ∧
1𝑜 ∈ {1𝑜}) →
〈1𝑜, 1𝑜〉 ∈
(2𝑜 × {1𝑜})) |
212 | 209, 210,
211 | mp2an 704 |
. . . . . . . . 9
⊢
〈1𝑜, 1𝑜〉 ∈
(2𝑜 × {1𝑜}) |
213 | 205, 212 | sselii 3565 |
. . . . . . . 8
⊢
〈1𝑜, 1𝑜〉 ∈ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜})) |
214 | | 1n0 7462 |
. . . . . . . . . . . 12
⊢
1𝑜 ≠ ∅ |
215 | 214 | neii 2784 |
. . . . . . . . . . 11
⊢ ¬
1𝑜 = ∅ |
216 | | opelxp2 5075 |
. . . . . . . . . . . 12
⊢
(〈1𝑜, 1𝑜〉 ∈ (𝐴 × {∅}) →
1𝑜 ∈ {∅}) |
217 | | elsni 4142 |
. . . . . . . . . . . 12
⊢
(1𝑜 ∈ {∅} → 1𝑜 =
∅) |
218 | 216, 217 | syl 17 |
. . . . . . . . . . 11
⊢
(〈1𝑜, 1𝑜〉 ∈ (𝐴 × {∅}) →
1𝑜 = ∅) |
219 | 215, 218 | mto 187 |
. . . . . . . . . 10
⊢ ¬
〈1𝑜, 1𝑜〉 ∈ (𝐴 ×
{∅}) |
220 | | nnord 6965 |
. . . . . . . . . . . 12
⊢
(1𝑜 ∈ ω → Ord
1𝑜) |
221 | | ordirr 5658 |
. . . . . . . . . . . 12
⊢ (Ord
1𝑜 → ¬ 1𝑜 ∈
1𝑜) |
222 | 206, 220,
221 | mp2b 10 |
. . . . . . . . . . 11
⊢ ¬
1𝑜 ∈ 1𝑜 |
223 | | opelxp1 5074 |
. . . . . . . . . . 11
⊢
(〈1𝑜, 1𝑜〉 ∈
(1𝑜 × {1𝑜}) →
1𝑜 ∈ 1𝑜) |
224 | 222, 223 | mto 187 |
. . . . . . . . . 10
⊢ ¬
〈1𝑜, 1𝑜〉 ∈
(1𝑜 × {1𝑜}) |
225 | 219, 224 | pm3.2ni 895 |
. . . . . . . . 9
⊢ ¬
(〈1𝑜, 1𝑜〉 ∈ (𝐴 × {∅}) ∨
〈1𝑜, 1𝑜〉 ∈
(1𝑜 × {1𝑜})) |
226 | | elun 3715 |
. . . . . . . . 9
⊢
(〈1𝑜, 1𝑜〉 ∈ ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ↔
(〈1𝑜, 1𝑜〉 ∈ (𝐴 × {∅}) ∨
〈1𝑜, 1𝑜〉 ∈
(1𝑜 × {1𝑜}))) |
227 | 225, 226 | mtbir 312 |
. . . . . . . 8
⊢ ¬
〈1𝑜, 1𝑜〉 ∈ ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) |
228 | | ssnelpss 3680 |
. . . . . . . 8
⊢ (((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜})) →
((〈1𝑜, 1𝑜〉 ∈ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜})) ∧ ¬
〈1𝑜, 1𝑜〉 ∈ ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜}))) → ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜})))) |
229 | 213, 227,
228 | mp2ani 710 |
. . . . . . 7
⊢ (((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ⊆ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜})) → ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜}))) |
230 | 204, 229 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜}))) |
231 | | cdaval 8875 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧
1𝑜 ∈ ω) → (𝐴 +𝑐
1𝑜) = ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜}))) |
232 | 4, 206, 231 | sylancl 693 |
. . . . . . 7
⊢ (𝜑 → (𝐴 +𝑐
1𝑜) = ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜}))) |
233 | | cdaval 8875 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧
2𝑜 ∈ ω) → (𝐴 +𝑐
2𝑜) = ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜}))) |
234 | 4, 191, 233 | sylancl 693 |
. . . . . . 7
⊢ (𝜑 → (𝐴 +𝑐
2𝑜) = ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜}))) |
235 | 232, 234 | psseq12d 3663 |
. . . . . 6
⊢ (𝜑 → ((𝐴 +𝑐
1𝑜) ⊊ (𝐴 +𝑐
2𝑜) ↔ ((𝐴 × {∅}) ∪
(1𝑜 × {1𝑜})) ⊊ ((𝐴 × {∅}) ∪
(2𝑜 × {1𝑜})))) |
236 | 230, 235 | mpbird 246 |
. . . . 5
⊢ (𝜑 → (𝐴 +𝑐
1𝑜) ⊊ (𝐴 +𝑐
2𝑜)) |
237 | | php3 8031 |
. . . . 5
⊢ (((𝐴 +𝑐
2𝑜) ∈ Fin ∧ (𝐴 +𝑐
1𝑜) ⊊ (𝐴 +𝑐
2𝑜)) → (𝐴 +𝑐
1𝑜) ≺ (𝐴 +𝑐
2𝑜)) |
238 | 197, 236,
237 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (𝐴 +𝑐
1𝑜) ≺ (𝐴 +𝑐
2𝑜)) |
239 | | canthp1lem1 9353 |
. . . . 5
⊢
(1𝑜 ≺ 𝐴 → (𝐴 +𝑐
2𝑜) ≼ 𝒫 𝐴) |
240 | 1, 239 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 +𝑐
2𝑜) ≼ 𝒫 𝐴) |
241 | | sdomdomtr 7978 |
. . . 4
⊢ (((𝐴 +𝑐
1𝑜) ≺ (𝐴 +𝑐
2𝑜) ∧ (𝐴 +𝑐
2𝑜) ≼ 𝒫 𝐴) → (𝐴 +𝑐
1𝑜) ≺ 𝒫 𝐴) |
242 | 238, 240,
241 | syl2anc 691 |
. . 3
⊢ (𝜑 → (𝐴 +𝑐
1𝑜) ≺ 𝒫 𝐴) |
243 | | sdomnen 7870 |
. . 3
⊢ ((𝐴 +𝑐
1𝑜) ≺ 𝒫 𝐴 → ¬ (𝐴 +𝑐
1𝑜) ≈ 𝒫 𝐴) |
244 | 242, 243 | syl 17 |
. 2
⊢ (𝜑 → ¬ (𝐴 +𝑐
1𝑜) ≈ 𝒫 𝐴) |
245 | 11, 244 | pm2.65i 184 |
1
⊢ ¬
𝜑 |