Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth2g Structured version   Visualization version   GIF version

Theorem canth2g 7999
 Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.)
Assertion
Ref Expression
canth2g (𝐴𝑉𝐴 ≺ 𝒫 𝐴)

Proof of Theorem canth2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4111 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
2 breq12 4588 . . 3 ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴))
31, 2mpdan 699 . 2 (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴))
4 vex 3176 . . 3 𝑥 ∈ V
54canth2 7998 . 2 𝑥 ≺ 𝒫 𝑥
63, 5vtoclg 3239 1 (𝐴𝑉𝐴 ≺ 𝒫 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  𝒫 cpw 4108   class class class wbr 4583   ≺ csdm 7840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-en 7842  df-dom 7843  df-sdom 7844 This theorem is referenced by:  2pwuninel  8000  2pwne  8001  pwfi  8144  cdalepw  8901  isfin32i  9070  fin34  9095  hsmexlem1  9131  canth3  9262  ondomon  9264  gchdomtri  9330  canthp1lem1  9353  canthp1lem2  9354  pwfseqlem5  9364  gchcdaidm  9369  gchxpidm  9370  gchpwdom  9371  gchaclem  9379  gchhar  9380  tsksdom  9457
 Copyright terms: Public domain W3C validator