Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cador Structured version   Visualization version   GIF version

 Description: The adder carry in disjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.)
Assertion
Ref Expression

StepHypRef Expression
1 xor2 1462 . . . . . . 7 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
21rbaib 945 . . . . . 6 (¬ (𝜑𝜓) → ((𝜑𝜓) ↔ (𝜑𝜓)))
32anbi1d 737 . . . . 5 (¬ (𝜑𝜓) → (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜓) ∧ 𝜒)))
4 ancom 465 . . . . 5 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑𝜓)))
5 andir 908 . . . . 5 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
63, 4, 53bitr3g 301 . . . 4 (¬ (𝜑𝜓) → ((𝜒 ∧ (𝜑𝜓)) ↔ ((𝜑𝜒) ∨ (𝜓𝜒))))
76pm5.74i 259 . . 3 ((¬ (𝜑𝜓) → (𝜒 ∧ (𝜑𝜓))) ↔ (¬ (𝜑𝜓) → ((𝜑𝜒) ∨ (𝜓𝜒))))
8 df-or 384 . . 3 (((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))) ↔ (¬ (𝜑𝜓) → (𝜒 ∧ (𝜑𝜓))))
9 df-or 384 . . 3 (((𝜑𝜓) ∨ ((𝜑𝜒) ∨ (𝜓𝜒))) ↔ (¬ (𝜑𝜓) → ((𝜑𝜒) ∨ (𝜓𝜒))))
107, 8, 93bitr4i 291 . 2 (((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))) ↔ ((𝜑𝜓) ∨ ((𝜑𝜒) ∨ (𝜓𝜒))))
11 df-cad 1537 . 2 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))))
12 3orass 1034 . 2 (((𝜑𝜓) ∨ (𝜑𝜒) ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ ((𝜑𝜒) ∨ (𝜓𝜒))))
1310, 11, 123bitr4i 291 1 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (𝜑𝜒) ∨ (𝜓𝜒)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∨ w3o 1030   ⊻ wxo 1456  caddwcad 1536 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-xor 1457  df-cad 1537 This theorem is referenced by:  cadan  1539  cadnot  1545
 Copyright terms: Public domain W3C validator