Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp2 Structured version   Visualization version   GIF version

Theorem brtxp2 31158
Description: The binary relationship over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.)
Hypothesis
Ref Expression
brtxp2.1 𝐴 ∈ V
Assertion
Ref Expression
brtxp2 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem brtxp2
StepHypRef Expression
1 txpss3v 31155 . . . . . . 7 (𝑅𝑆) ⊆ (V × (V × V))
21brel 5090 . . . . . 6 (𝐴(𝑅𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V)))
32simprd 478 . . . . 5 (𝐴(𝑅𝑆)𝐵𝐵 ∈ (V × V))
4 elvv 5100 . . . . 5 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4sylib 207 . . . 4 (𝐴(𝑅𝑆)𝐵 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
65pm4.71ri 663 . . 3 (𝐴(𝑅𝑆)𝐵 ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
7 19.41vv 1902 . . 3 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
86, 7bitr4i 266 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
9 breq2 4587 . . . 4 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
109pm5.32i 667 . . 3 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
11102exbii 1765 . 2 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
12 brtxp2.1 . . . . . 6 𝐴 ∈ V
13 vex 3176 . . . . . 6 𝑥 ∈ V
14 vex 3176 . . . . . 6 𝑦 ∈ V
1512, 13, 14brtxp 31157 . . . . 5 (𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥𝐴𝑆𝑦))
1615anbi2i 726 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦)))
17 3anass 1035 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1816, 17bitr4i 266 . . 3 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
19182exbii 1765 . 2 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
208, 11, 193bitri 285 1 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cop 4131   class class class wbr 4583   × cxp 5036  ctxp 31106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059  df-2nd 7060  df-txp 31130
This theorem is referenced by:  brsuccf  31218  brrestrict  31226
  Copyright terms: Public domain W3C validator