Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfullfun Structured version   Visualization version   GIF version

Theorem brfullfun 31225
 Description: A binary relationship form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brfullfun.1 𝐴 ∈ V
brfullfun.2 𝐵 ∈ V
Assertion
Ref Expression
brfullfun (𝐴FullFun𝐹𝐵𝐵 = (𝐹𝐴))

Proof of Theorem brfullfun
StepHypRef Expression
1 eqcom 2617 . 2 ((FullFun𝐹𝐴) = 𝐵𝐵 = (FullFun𝐹𝐴))
2 fullfunfnv 31223 . . 3 FullFun𝐹 Fn V
3 brfullfun.1 . . 3 𝐴 ∈ V
4 fnbrfvb 6146 . . 3 ((FullFun𝐹 Fn V ∧ 𝐴 ∈ V) → ((FullFun𝐹𝐴) = 𝐵𝐴FullFun𝐹𝐵))
52, 3, 4mp2an 704 . 2 ((FullFun𝐹𝐴) = 𝐵𝐴FullFun𝐹𝐵)
6 fullfunfv 31224 . . 3 (FullFun𝐹𝐴) = (𝐹𝐴)
76eqeq2i 2622 . 2 (𝐵 = (FullFun𝐹𝐴) ↔ 𝐵 = (𝐹𝐴))
81, 5, 73bitr3i 289 1 (𝐴FullFun𝐹𝐵𝐵 = (𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583   Fn wfn 5799  ‘cfv 5804  FullFuncfullfn 31126 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-symdif 3806  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-eprel 4949  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059  df-2nd 7060  df-txp 31130  df-singleton 31138  df-singles 31139  df-image 31140  df-funpart 31150  df-fullfun 31151 This theorem is referenced by:  dfrecs2  31227  dfrdg4  31228
 Copyright terms: Public domain W3C validator