Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1indALT Structured version   Visualization version   GIF version

Theorem brfi1indALT 13137
 Description: Alternate proof of brfi1ind 13136, which does not use brfi1uzind 13135. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
brfi1ind.r Rel 𝐺
brfi1ind.f 𝐹 ∈ V
brfi1ind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
brfi1ind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
brfi1ind.3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
brfi1ind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
brfi1ind.base ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)
brfi1ind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
brfi1indALT ((𝑉𝐺𝐸𝑉 ∈ Fin) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem brfi1indALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashcl 13009 . . 3 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
2 df-clel 2606 . . . 4 ((#‘𝑉) ∈ ℕ0 ↔ ∃𝑛(𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0))
3 eqeq2 2621 . . . . . . . . . . . . . 14 (𝑥 = 0 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 0))
43anbi2d 736 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 0)))
54imbi1d 330 . . . . . . . . . . . 12 (𝑥 = 0 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)))
652albidv 1838 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)))
7 eqeq2 2621 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 𝑦))
87anbi2d 736 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦)))
98imbi1d 330 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓)))
1092albidv 1838 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓)))
11 eqeq2 2621 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = (𝑦 + 1)))
1211anbi2d 736 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))))
1312imbi1d 330 . . . . . . . . . . . 12 (𝑥 = (𝑦 + 1) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)))
14132albidv 1838 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)))
15 eqeq2 2621 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 𝑛))
1615anbi2d 736 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛)))
1716imbi1d 330 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓)))
18172albidv 1838 . . . . . . . . . . 11 (𝑥 = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓)))
19 brfi1ind.base . . . . . . . . . . . 12 ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)
2019gen2 1714 . . . . . . . . . . 11 𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)
21 breq12 4588 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑣𝐺𝑒𝑤𝐺𝑓))
22 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (#‘𝑣) = (#‘𝑤))
2322eqeq1d 2612 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → ((#‘𝑣) = 𝑦 ↔ (#‘𝑤) = 𝑦))
2423adantr 480 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑤𝑒 = 𝑓) → ((#‘𝑣) = 𝑦 ↔ (#‘𝑤) = 𝑦))
2521, 24anbi12d 743 . . . . . . . . . . . . . 14 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) ↔ (𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦)))
26 brfi1ind.2 . . . . . . . . . . . . . 14 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
2725, 26imbi12d 333 . . . . . . . . . . . . 13 ((𝑣 = 𝑤𝑒 = 𝑓) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) ↔ ((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)))
2827cbval2v 2273 . . . . . . . . . . . 12 (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) ↔ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃))
29 nn0re 11178 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
30 1re 9918 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
3130a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → 1 ∈ ℝ)
32 nn0ge0 11195 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
33 0lt1 10429 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
3433a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → 0 < 1)
3529, 31, 32, 34addgegt0d 10480 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → 0 < (𝑦 + 1))
3635adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0 ∧ (#‘𝑣) = (𝑦 + 1)) → 0 < (𝑦 + 1))
37 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0 ∧ (#‘𝑣) = (𝑦 + 1)) → (#‘𝑣) = (𝑦 + 1))
3836, 37breqtrrd 4611 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ (#‘𝑣) = (𝑦 + 1)) → 0 < (#‘𝑣))
3938adantrl 748 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → 0 < (#‘𝑣))
40 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
41 hashgt0elex 13050 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ V ∧ 0 < (#‘𝑣)) → ∃𝑛 𝑛𝑣)
42 brfi1ind.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
4340a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑣 ∈ V)
44 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑛𝑣)
45 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑦 ∈ ℕ0)
46 brfi1indlem 13133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑣 ∈ V ∧ 𝑛𝑣𝑦 ∈ ℕ0) → ((#‘𝑣) = (𝑦 + 1) → (#‘(𝑣 ∖ {𝑛})) = 𝑦))
4743, 44, 45, 46syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℕ0𝑛𝑣) → ((#‘𝑣) = (𝑦 + 1) → (#‘(𝑣 ∖ {𝑛})) = 𝑦))
4847imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (#‘(𝑣 ∖ {𝑛})) = 𝑦)
49 peano2nn0 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
5049ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑦 + 1) ∈ ℕ0)
5150ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑦 + 1) ∈ ℕ0)
52 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑣𝐺𝑒)
53 simplrr 797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (#‘𝑣) = (𝑦 + 1))
54 simprlr 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) → 𝑛𝑣)
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑛𝑣)
5652, 53, 553jca 1235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
5751, 56jca 553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
58 difexg 4735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑣 ∈ V → (𝑣 ∖ {𝑛}) ∈ V)
5940, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑣 ∖ {𝑛}) ∈ V
60 brfi1ind.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝐹 ∈ V
61 breq12 4588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝑤𝐺𝑓 ↔ (𝑣 ∖ {𝑛})𝐺𝐹))
62 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑤 = (𝑣 ∖ {𝑛}) → (#‘𝑤) = (#‘(𝑣 ∖ {𝑛})))
6362eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑤 = (𝑣 ∖ {𝑛}) → ((#‘𝑤) = 𝑦 ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦))
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((#‘𝑤) = 𝑦 ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦))
6561, 64anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) ↔ ((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦)))
66 brfi1ind.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
6765, 66imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ↔ (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)))
6867spc2gv 3269 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑣 ∖ {𝑛}) ∈ V ∧ 𝐹 ∈ V) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)))
6959, 60, 68mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))
7069expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦𝜒))
7170ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦𝜒))
72 brfi1ind.step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
7357, 71, 72syl6an 566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦𝜓))
7473exp41 636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → ((#‘(𝑣 ∖ {𝑛})) = 𝑦𝜓)))))
7574com15 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7675com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7748, 76mpcom 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
7877ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 ∈ ℕ0𝑛𝑣) → ((#‘𝑣) = (𝑦 + 1) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7978com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 ∈ ℕ0𝑛𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8079ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℕ0 → (𝑛𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
8180com15 99 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣𝐺𝑒 → (𝑛𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
8281imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣𝐺𝑒𝑛𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8342, 82mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣𝐺𝑒𝑛𝑣) → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
8483ex 449 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣𝐺𝑒 → (𝑛𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8584com4l 90 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8685exlimiv 1845 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑛 𝑛𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8741, 86syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ V ∧ 0 < (#‘𝑣)) → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8887ex 449 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ V → (0 < (#‘𝑣) → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
8988com25 97 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (𝑣𝐺𝑒 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 < (#‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
9040, 89ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑣𝐺𝑒 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 < (#‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
9190imp 444 . . . . . . . . . . . . . . . . 17 ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑦 ∈ ℕ0 → (0 < (#‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
9291impcom 445 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → (0 < (#‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))
9339, 92mpd 15 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))
9493impancom 455 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0 ∧ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓))
9594alrimivv 1843 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓))
9695ex 449 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)))
9728, 96syl5bi 231 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)))
986, 10, 14, 18, 20, 97nn0ind 11348 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓))
99 brfi1ind.r . . . . . . . . . . . . . 14 Rel 𝐺
10099brrelexi 5082 . . . . . . . . . . . . 13 (𝑉𝐺𝐸𝑉 ∈ V)
10199brrelex2i 5083 . . . . . . . . . . . . 13 (𝑉𝐺𝐸𝐸 ∈ V)
102100, 101jca 553 . . . . . . . . . . . 12 (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
103 breq12 4588 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣𝐺𝑒𝑉𝐺𝐸))
104 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑉 → (#‘𝑣) = (#‘𝑉))
105104eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → ((#‘𝑣) = 𝑛 ↔ (#‘𝑉) = 𝑛))
106105adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑉𝑒 = 𝐸) → ((#‘𝑣) = 𝑛 ↔ (#‘𝑉) = 𝑛))
107103, 106anbi12d 743 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑒 = 𝐸) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) ↔ (𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛)))
108 brfi1ind.1 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
109107, 108imbi12d 333 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑉𝑒 = 𝐸) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) ↔ ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → 𝜑)))
110109spc2gv 3269 . . . . . . . . . . . . . 14 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → 𝜑)))
111110com23 84 . . . . . . . . . . . . 13 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑)))
112111expd 451 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝐺𝐸 → ((#‘𝑉) = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑))))
113102, 112mpcom 37 . . . . . . . . . . 11 (𝑉𝐺𝐸 → ((#‘𝑉) = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑)))
114113imp 444 . . . . . . . . . 10 ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑))
11598, 114syl5 33 . . . . . . . . 9 ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (𝑛 ∈ ℕ0𝜑))
116115expcom 450 . . . . . . . 8 ((#‘𝑉) = 𝑛 → (𝑉𝐺𝐸 → (𝑛 ∈ ℕ0𝜑)))
117116com23 84 . . . . . . 7 ((#‘𝑉) = 𝑛 → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸𝜑)))
118117eqcoms 2618 . . . . . 6 (𝑛 = (#‘𝑉) → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸𝜑)))
119118imp 444 . . . . 5 ((𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸𝜑))
120119exlimiv 1845 . . . 4 (∃𝑛(𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸𝜑))
1212, 120sylbi 206 . . 3 ((#‘𝑉) ∈ ℕ0 → (𝑉𝐺𝐸𝜑))
1221, 121syl 17 . 2 (𝑉 ∈ Fin → (𝑉𝐺𝐸𝜑))
123122impcom 445 1 ((𝑉𝐺𝐸𝑉 ∈ Fin) → 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173   ∖ cdif 3537  {csn 4125   class class class wbr 4583  Rel wrel 5043  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  ℕ0cn0 11169  #chash 12979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator