Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfae Structured version   Visualization version   GIF version

Theorem brfae 29638
Description: 'almost everywhere' relation for two functions 𝐹 and 𝐺 with regard to the measure 𝑀. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
brfae.0 dom 𝑅 = 𝐷
brfae.1 (𝜑𝑅 ∈ V)
brfae.2 (𝜑𝑀 ran measures)
brfae.3 (𝜑𝐹 ∈ (𝐷𝑚 dom 𝑀))
brfae.4 (𝜑𝐺 ∈ (𝐷𝑚 dom 𝑀))
Assertion
Ref Expression
brfae (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑀   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)

Proof of Theorem brfae
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfae.3 . . 3 (𝜑𝐹 ∈ (𝐷𝑚 dom 𝑀))
2 brfae.4 . . 3 (𝜑𝐺 ∈ (𝐷𝑚 dom 𝑀))
3 simpl 472 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
43eleq1d 2672 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ↔ 𝐹 ∈ (dom 𝑅𝑚 dom 𝑀)))
5 simpr 476 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
65eleq1d 2672 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔 ∈ (dom 𝑅𝑚 dom 𝑀) ↔ 𝐺 ∈ (dom 𝑅𝑚 dom 𝑀)))
74, 6anbi12d 743 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ↔ (𝐹 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅𝑚 dom 𝑀))))
83fveq1d 6105 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑥) = (𝐹𝑥))
95fveq1d 6105 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔𝑥) = (𝐺𝑥))
108, 9breq12d 4596 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝐹𝑥)𝑅(𝐺𝑥)))
1110rabbidv 3164 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)} = {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)})
1211breq1d 4593 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ({𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
137, 12anbi12d 743 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀) ↔ ((𝐹 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
14 eqid 2610 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}
1513, 14brabga 4914 . . 3 ((𝐹 ∈ (𝐷𝑚 dom 𝑀) ∧ 𝐺 ∈ (𝐷𝑚 dom 𝑀)) → (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺 ↔ ((𝐹 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
161, 2, 15syl2anc 691 . 2 (𝜑 → (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺 ↔ ((𝐹 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
17 brfae.1 . . . 4 (𝜑𝑅 ∈ V)
18 brfae.2 . . . 4 (𝜑𝑀 ran measures)
19 faeval 29636 . . . 4 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
2017, 18, 19syl2anc 691 . . 3 (𝜑 → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
2120breqd 4594 . 2 (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺))
22 brfae.0 . . . . . 6 dom 𝑅 = 𝐷
2322oveq1i 6559 . . . . 5 (dom 𝑅𝑚 dom 𝑀) = (𝐷𝑚 dom 𝑀)
241, 23syl6eleqr 2699 . . . 4 (𝜑𝐹 ∈ (dom 𝑅𝑚 dom 𝑀))
252, 23syl6eleqr 2699 . . . 4 (𝜑𝐺 ∈ (dom 𝑅𝑚 dom 𝑀))
2624, 25jca 553 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅𝑚 dom 𝑀)))
2726biantrurd 528 . 2 (𝜑 → ({𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀 ↔ ((𝐹 ∈ (dom 𝑅𝑚 dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅𝑚 dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
2816, 21, 273bitr4d 299 1 (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173   cuni 4372   class class class wbr 4583  {copab 4642  dom cdm 5038  ran crn 5039  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  measurescmeas 29585  a.e.cae 29627  ~ a.e.cfae 29628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fae 29635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator