MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brecop2 Structured version   Visualization version   GIF version

Theorem brecop2 7728
Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996.)
Hypotheses
Ref Expression
brecop2.1 ∈ V
brecop2.5 dom = (𝐺 × 𝐺)
brecop2.6 𝐻 = ((𝐺 × 𝐺) / )
brecop2.7 𝑅 ⊆ (𝐻 × 𝐻)
brecop2.8 ⊆ (𝐺 × 𝐺)
brecop2.9 ¬ ∅ ∈ 𝐺
brecop2.10 dom + = (𝐺 × 𝐺)
brecop2.11 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶)))
Assertion
Ref Expression
brecop2 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶))

Proof of Theorem brecop2
StepHypRef Expression
1 brecop2.7 . . . 4 𝑅 ⊆ (𝐻 × 𝐻)
21brel 5090 . . 3 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] → ([⟨𝐴, 𝐵⟩] 𝐻 ∧ [⟨𝐶, 𝐷⟩] 𝐻))
3 brecop2.5 . . . . . . 7 dom = (𝐺 × 𝐺)
4 ecelqsdm 7704 . . . . . . 7 ((dom = (𝐺 × 𝐺) ∧ [⟨𝐴, 𝐵⟩] ∈ ((𝐺 × 𝐺) / )) → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
53, 4mpan 702 . . . . . 6 ([⟨𝐴, 𝐵⟩] ∈ ((𝐺 × 𝐺) / ) → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
6 brecop2.6 . . . . . 6 𝐻 = ((𝐺 × 𝐺) / )
75, 6eleq2s 2706 . . . . 5 ([⟨𝐴, 𝐵⟩] 𝐻 → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
8 opelxp 5070 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺) ↔ (𝐴𝐺𝐵𝐺))
97, 8sylib 207 . . . 4 ([⟨𝐴, 𝐵⟩] 𝐻 → (𝐴𝐺𝐵𝐺))
10 ecelqsdm 7704 . . . . . . 7 ((dom = (𝐺 × 𝐺) ∧ [⟨𝐶, 𝐷⟩] ∈ ((𝐺 × 𝐺) / )) → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
113, 10mpan 702 . . . . . 6 ([⟨𝐶, 𝐷⟩] ∈ ((𝐺 × 𝐺) / ) → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
1211, 6eleq2s 2706 . . . . 5 ([⟨𝐶, 𝐷⟩] 𝐻 → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
13 opelxp 5070 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺) ↔ (𝐶𝐺𝐷𝐺))
1412, 13sylib 207 . . . 4 ([⟨𝐶, 𝐷⟩] 𝐻 → (𝐶𝐺𝐷𝐺))
159, 14anim12i 588 . . 3 (([⟨𝐴, 𝐵⟩] 𝐻 ∧ [⟨𝐶, 𝐷⟩] 𝐻) → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
162, 15syl 17 . 2 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
17 brecop2.8 . . . . 5 ⊆ (𝐺 × 𝐺)
1817brel 5090 . . . 4 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴 + 𝐷) ∈ 𝐺 ∧ (𝐵 + 𝐶) ∈ 𝐺))
19 brecop2.10 . . . . . 6 dom + = (𝐺 × 𝐺)
20 brecop2.9 . . . . . 6 ¬ ∅ ∈ 𝐺
2119, 20ndmovrcl 6718 . . . . 5 ((𝐴 + 𝐷) ∈ 𝐺 → (𝐴𝐺𝐷𝐺))
2219, 20ndmovrcl 6718 . . . . 5 ((𝐵 + 𝐶) ∈ 𝐺 → (𝐵𝐺𝐶𝐺))
2321, 22anim12i 588 . . . 4 (((𝐴 + 𝐷) ∈ 𝐺 ∧ (𝐵 + 𝐶) ∈ 𝐺) → ((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)))
2418, 23syl 17 . . 3 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)))
25 an42 862 . . 3 (((𝐴𝐺𝐷𝐺) ∧ (𝐵𝐺𝐶𝐺)) ↔ ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
2624, 25sylib 207 . 2 ((𝐴 + 𝐷) (𝐵 + 𝐶) → ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)))
27 brecop2.11 . 2 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶)))
2816, 26, 27pm5.21nii 367 1 ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  c0 3874  cop 4131   class class class wbr 4583   × cxp 5036  dom cdm 5038  (class class class)co 6549  [cec 7627   / cqs 7628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fv 5812  df-ov 6552  df-ec 7631  df-qs 7635
This theorem is referenced by:  ltsrpr  9777
  Copyright terms: Public domain W3C validator