Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcog Structured version   Visualization version   GIF version

Theorem brcog 5210
 Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
Assertion
Ref Expression
brcog ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem brcog
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4586 . . . 4 (𝑦 = 𝐴 → (𝑦𝐷𝑥𝐴𝐷𝑥))
2 breq2 4587 . . . 4 (𝑧 = 𝐵 → (𝑥𝐶𝑧𝑥𝐶𝐵))
31, 2bi2anan9 913 . . 3 ((𝑦 = 𝐴𝑧 = 𝐵) → ((𝑦𝐷𝑥𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥𝑥𝐶𝐵)))
43exbidv 1837 . 2 ((𝑦 = 𝐴𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
5 df-co 5047 . 2 (𝐶𝐷) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐷𝑥𝑥𝐶𝑧)}
64, 5brabga 4914 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   class class class wbr 4583   ∘ ccom 5042 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-co 5047 This theorem is referenced by:  opelco2g  5211  brcogw  5212  brco  5214  brcodir  5434  brtpos2  7245  ertr  7644  relexpindlem  13651  znleval  19722  fcoinvbr  28799  opelco3  30923  frege124d  37072  funressnfv  39857
 Copyright terms: Public domain W3C validator