Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . 4
⊢ (𝐴 = 0ℎ →
(bra‘𝐴) =
(bra‘0ℎ)) |
2 | 1 | fveq2d 6107 |
. . 3
⊢ (𝐴 = 0ℎ →
(normfn‘(bra‘𝐴)) =
(normfn‘(bra‘0ℎ))) |
3 | | fveq2 6103 |
. . 3
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) =
(normℎ‘0ℎ)) |
4 | 2, 3 | eqeq12d 2625 |
. 2
⊢ (𝐴 = 0ℎ →
((normfn‘(bra‘𝐴)) = (normℎ‘𝐴) ↔
(normfn‘(bra‘0ℎ)) =
(normℎ‘0ℎ))) |
5 | | brafn 28190 |
. . . . 5
⊢ (𝐴 ∈ ℋ →
(bra‘𝐴):
ℋ⟶ℂ) |
6 | | nmfnval 28119 |
. . . . 5
⊢
((bra‘𝐴):
ℋ⟶ℂ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, <
)) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝐴 ∈ ℋ →
(normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, <
)) |
8 | 7 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, <
)) |
9 | | nmfnsetre 28120 |
. . . . . . . 8
⊢
((bra‘𝐴):
ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ) |
10 | 5, 9 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ) |
11 | | ressxr 9962 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
12 | 10, 11 | syl6ss 3580 |
. . . . . 6
⊢ (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆
ℝ*) |
13 | | normcl 27366 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℝ) |
14 | 13 | rexrd 9968 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈
ℝ*) |
15 | 12, 14 | jca 553 |
. . . . 5
⊢ (𝐴 ∈ ℋ → ({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧
(normℎ‘𝐴) ∈
ℝ*)) |
16 | 15 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧
(normℎ‘𝐴) ∈
ℝ*)) |
17 | | vex 3176 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
18 | | eqeq1 2614 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) |
19 | 18 | anbi2d 736 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))) |
20 | 19 | rexbidv 3034 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))) |
21 | 17, 20 | elab 3319 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) |
22 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) |
23 | | braval 28187 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
((bra‘𝐴)‘𝑦) = (𝑦 ·ih 𝐴)) |
24 | 23 | fveq2d 6107 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴))) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴))) |
26 | 22, 25 | sylan9eqr 2666 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 = (abs‘(𝑦 ·ih 𝐴))) |
27 | | bcs2 27423 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧
(normℎ‘𝑦) ≤ 1) → (abs‘(𝑦
·ih 𝐴)) ≤ (normℎ‘𝐴)) |
28 | 27 | 3expa 1257 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) → (abs‘(𝑦
·ih 𝐴)) ≤ (normℎ‘𝐴)) |
29 | 28 | ancom1s 843 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) → (abs‘(𝑦
·ih 𝐴)) ≤ (normℎ‘𝐴)) |
30 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → (abs‘(𝑦 ·ih 𝐴)) ≤
(normℎ‘𝐴)) |
31 | 26, 30 | eqbrtrd 4605 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (normℎ‘𝐴)) |
32 | 31 | exp41 636 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℋ → (𝑦 ∈ ℋ →
((normℎ‘𝑦) ≤ 1 → (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 ≤ (normℎ‘𝐴))))) |
33 | 32 | imp4a 612 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ → (𝑦 ∈ ℋ →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (normℎ‘𝐴)))) |
34 | 33 | rexlimdv 3012 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (normℎ‘𝐴))) |
35 | 34 | imp 444 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) → 𝑧 ≤ (normℎ‘𝐴)) |
36 | 21, 35 | sylan2b 491 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) → 𝑧 ≤ (normℎ‘𝐴)) |
37 | 36 | ralrimiva 2949 |
. . . . 5
⊢ (𝐴 ∈ ℋ →
∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (normℎ‘𝐴)) |
38 | 37 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ∀𝑧 ∈
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (normℎ‘𝐴)) |
39 | 13 | recnd 9947 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℂ) |
40 | 39 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℂ) |
41 | | normne0 27371 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠
0ℎ)) |
42 | 41 | biimpar 501 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ≠ 0) |
43 | 40, 42 | reccld 10673 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℂ) |
44 | | simpl 472 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 𝐴 ∈
ℋ) |
45 | | hvmulcl 27254 |
. . . . . . . . . . . 12
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
46 | 43, 44, 45 | syl2anc 691 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
47 | | norm1 27490 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
48 | | 1le1 10534 |
. . . . . . . . . . . 12
⊢ 1 ≤
1 |
49 | 47, 48 | syl6eqbr 4622 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ≤ 1) |
50 | | ax-his3 27325 |
. . . . . . . . . . . . 13
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
51 | 43, 44, 44, 50 | syl3anc 1318 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((1 / (normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
52 | 13 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℝ) |
53 | 52, 42 | rereccld 10731 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℝ) |
54 | | hiidrcl 27336 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℋ → (𝐴
·ih 𝐴) ∈ ℝ) |
55 | 54 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝐴
·ih 𝐴) ∈ ℝ) |
56 | 53, 55 | remulcld 9949 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) · (𝐴 ·ih 𝐴)) ∈
ℝ) |
57 | 51, 56 | eqeltrd 2688 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((1 / (normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴) ∈ ℝ) |
58 | | normgt0 27368 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ
↔ 0 < (normℎ‘𝐴))) |
59 | 58 | biimpa 500 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (normℎ‘𝐴)) |
60 | 52, 59 | recgt0d 10837 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (1 / (normℎ‘𝐴))) |
61 | | 0re 9919 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
62 | | ltle 10005 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ (1 / (normℎ‘𝐴)) ∈ ℝ) → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
63 | 61, 62 | mpan 702 |
. . . . . . . . . . . . . . . 16
⊢ ((1 /
(normℎ‘𝐴)) ∈ ℝ → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
64 | 53, 60, 63 | sylc 63 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (1 / (normℎ‘𝐴))) |
65 | | hiidge0 27339 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℋ → 0 ≤
(𝐴
·ih 𝐴)) |
66 | 65 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (𝐴
·ih 𝐴)) |
67 | 53, 55, 64, 66 | mulge0d 10483 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ ((1 / (normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
68 | 67, 51 | breqtrrd 4611 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (((1 / (normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)) |
69 | 57, 68 | absidd 14009 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(((1 / (normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)) = (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)) |
70 | 40, 42 | recid2d 10676 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·
(normℎ‘𝐴)) = 1) |
71 | 70 | oveq2d 6565 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) · ((1 /
(normℎ‘𝐴)) ·
(normℎ‘𝐴))) = ((normℎ‘𝐴) · 1)) |
72 | 40, 43, 40 | mul12d 10124 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) · ((1 /
(normℎ‘𝐴)) ·
(normℎ‘𝐴))) = ((1 /
(normℎ‘𝐴)) ·
((normℎ‘𝐴) ·
(normℎ‘𝐴)))) |
73 | 39 | sqvald 12867 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴)↑2) =
((normℎ‘𝐴) ·
(normℎ‘𝐴))) |
74 | | normsq 27375 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴)) |
75 | 73, 74 | eqtr3d 2646 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ·
(normℎ‘𝐴)) = (𝐴 ·ih 𝐴)) |
76 | 75 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) ·
(normℎ‘𝐴)) = (𝐴 ·ih 𝐴)) |
77 | 76 | oveq2d 6565 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·
((normℎ‘𝐴) ·
(normℎ‘𝐴))) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
78 | 72, 77 | eqtrd 2644 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) · ((1 /
(normℎ‘𝐴)) ·
(normℎ‘𝐴))) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
79 | 39 | mulid1d 9936 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) · 1) =
(normℎ‘𝐴)) |
80 | 79 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) · 1) =
(normℎ‘𝐴)) |
81 | 71, 78, 80 | 3eqtr3rd 2653 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
82 | 51, 69, 81 | 3eqtr4rd 2655 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴))) |
83 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) →
(normℎ‘𝑦) = (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) |
84 | 83 | breq1d 4593 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) →
((normℎ‘𝑦) ≤ 1 ↔
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1)) |
85 | | oveq1 6556 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) → (𝑦 ·ih 𝐴) = (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)) |
86 | 85 | fveq2d 6107 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) → (abs‘(𝑦
·ih 𝐴)) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴))) |
87 | 86 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) →
((normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴)) ↔
(normℎ‘𝐴) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)))) |
88 | 84, 87 | anbi12d 743 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) →
(((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴))) ↔
((normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴))))) |
89 | 88 | rspcev 3282 |
. . . . . . . . . . 11
⊢ ((((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
((normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)))) → ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴)))) |
90 | 46, 49, 82, 89 | syl12anc 1316 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ∃𝑦 ∈
ℋ ((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴)))) |
91 | 24 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦)) ↔
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴)))) |
92 | 91 | anbi2d 736 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴))))) |
93 | 92 | rexbidva 3031 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ →
(∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴))))) |
94 | 93 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (∃𝑦 ∈
ℋ ((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴))))) |
95 | 90, 94 | mpbird 246 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ∃𝑦 ∈
ℋ ((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦)))) |
96 | | fvex 6113 |
. . . . . . . . . 10
⊢
(normℎ‘𝐴) ∈ V |
97 | | eqeq1 2614 |
. . . . . . . . . . . 12
⊢ (𝑥 =
(normℎ‘𝐴) → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦)))) |
98 | 97 | anbi2d 736 |
. . . . . . . . . . 11
⊢ (𝑥 =
(normℎ‘𝐴) →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))))) |
99 | 98 | rexbidv 3034 |
. . . . . . . . . 10
⊢ (𝑥 =
(normℎ‘𝐴) → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))))) |
100 | 96, 99 | elab 3319 |
. . . . . . . . 9
⊢
((normℎ‘𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦)))) |
101 | 95, 100 | sylibr 223 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) |
102 | | breq2 4587 |
. . . . . . . . 9
⊢ (𝑤 =
(normℎ‘𝐴) → (𝑧 < 𝑤 ↔ 𝑧 < (normℎ‘𝐴))) |
103 | 102 | rspcev 3282 |
. . . . . . . 8
⊢
(((normℎ‘𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ∧ 𝑧 < (normℎ‘𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤) |
104 | 101, 103 | sylan 487 |
. . . . . . 7
⊢ (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
∧ 𝑧 <
(normℎ‘𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤) |
105 | 104 | adantlr 747 |
. . . . . 6
⊢ ((((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
∧ 𝑧 ∈ ℝ)
∧ 𝑧 <
(normℎ‘𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤) |
106 | 105 | ex 449 |
. . . . 5
⊢ (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
∧ 𝑧 ∈ ℝ)
→ (𝑧 <
(normℎ‘𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)) |
107 | 106 | ralrimiva 2949 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ∀𝑧 ∈
ℝ (𝑧 <
(normℎ‘𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)) |
108 | | supxr2 12016 |
. . . 4
⊢ ((({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧
(normℎ‘𝐴) ∈ ℝ*) ∧
(∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (normℎ‘𝐴) ∧ ∀𝑧 ∈ ℝ (𝑧 <
(normℎ‘𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) =
(normℎ‘𝐴)) |
109 | 16, 38, 107, 108 | syl12anc 1316 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ sup({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) =
(normℎ‘𝐴)) |
110 | 8, 109 | eqtrd 2644 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normfn‘(bra‘𝐴)) = (normℎ‘𝐴)) |
111 | | nmfn0 28230 |
. . . 4
⊢
(normfn‘( ℋ × {0})) = 0 |
112 | | bra0 28193 |
. . . . 5
⊢
(bra‘0ℎ) = ( ℋ ×
{0}) |
113 | 112 | fveq2i 6106 |
. . . 4
⊢
(normfn‘(bra‘0ℎ)) =
(normfn‘( ℋ × {0})) |
114 | | norm0 27369 |
. . . 4
⊢
(normℎ‘0ℎ) =
0 |
115 | 111, 113,
114 | 3eqtr4i 2642 |
. . 3
⊢
(normfn‘(bra‘0ℎ)) =
(normℎ‘0ℎ) |
116 | 115 | a1i 11 |
. 2
⊢ (𝐴 ∈ ℋ →
(normfn‘(bra‘0ℎ)) =
(normℎ‘0ℎ)) |
117 | 4, 110, 116 | pm2.61ne 2867 |
1
⊢ (𝐴 ∈ ℋ →
(normfn‘(bra‘𝐴)) = (normℎ‘𝐴)) |