Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem2 Structured version   Visualization version   GIF version

Theorem bposlem2 24810
 Description: There are no odd primes in the range (2𝑁 / 3, 𝑁] dividing the 𝑁-th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bposlem2.1 (𝜑𝑁 ∈ ℕ)
bposlem2.2 (𝜑𝑃 ∈ ℙ)
bposlem2.3 (𝜑 → 2 < 𝑃)
bposlem2.4 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
bposlem2.5 (𝜑𝑃𝑁)
Assertion
Ref Expression
bposlem2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)

Proof of Theorem bposlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bposlem2.1 . . 3 (𝜑𝑁 ∈ ℕ)
2 bposlem2.2 . . 3 (𝜑𝑃 ∈ ℙ)
3 pcbcctr 24801 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
41, 2, 3syl2anc 691 . 2 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5 elfznn 12241 . . . . . 6 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
6 elnn1uz2 11641 . . . . . 6 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
75, 6sylib 207 . . . . 5 (𝑘 ∈ (1...(2 · 𝑁)) → (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
8 oveq2 6557 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑃𝑘) = (𝑃↑1))
9 prmnn 15226 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
102, 9syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
1110nncnd 10913 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
1211exp1d 12865 . . . . . . . . . . . 12 (𝜑 → (𝑃↑1) = 𝑃)
138, 12sylan9eqr 2666 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (𝑃𝑘) = 𝑃)
1413oveq2d 6565 . . . . . . . . . 10 ((𝜑𝑘 = 1) → ((2 · 𝑁) / (𝑃𝑘)) = ((2 · 𝑁) / 𝑃))
1514fveq2d 6107 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = (⌊‘((2 · 𝑁) / 𝑃)))
16 2t1e2 11053 . . . . . . . . . . . . 13 (2 · 1) = 2
1711mulid2d 9937 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · 𝑃) = 𝑃)
18 bposlem2.5 . . . . . . . . . . . . . . . 16 (𝜑𝑃𝑁)
1917, 18eqbrtrd 4605 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑃) ≤ 𝑁)
20 1red 9934 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
211nnred 10912 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
2210nnred 10912 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℝ)
2310nngt0d 10941 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑃)
24 lemuldiv 10782 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2520, 21, 22, 23, 24syl112anc 1322 . . . . . . . . . . . . . . 15 (𝜑 → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
2619, 25mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 / 𝑃))
2721, 10nndivred 10946 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 𝑃) ∈ ℝ)
28 1re 9918 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
29 2re 10967 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
30 2pos 10989 . . . . . . . . . . . . . . . . 17 0 < 2
3129, 30pm3.2i 470 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 10755 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3328, 31, 32mp3an13 1407 . . . . . . . . . . . . . . 15 ((𝑁 / 𝑃) ∈ ℝ → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3427, 33syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ (𝑁 / 𝑃) ↔ (2 · 1) ≤ (2 · (𝑁 / 𝑃))))
3526, 34mpbid 221 . . . . . . . . . . . . 13 (𝜑 → (2 · 1) ≤ (2 · (𝑁 / 𝑃)))
3616, 35syl5eqbrr 4619 . . . . . . . . . . . 12 (𝜑 → 2 ≤ (2 · (𝑁 / 𝑃)))
37 2cnd 10970 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
381nncnd 10913 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
3910nnne0d 10942 . . . . . . . . . . . . 13 (𝜑𝑃 ≠ 0)
4037, 38, 11, 39divassd 10715 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) = (2 · (𝑁 / 𝑃)))
4136, 40breqtrrd 4611 . . . . . . . . . . 11 (𝜑 → 2 ≤ ((2 · 𝑁) / 𝑃))
42 bposlem2.4 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) / 3) < 𝑃)
43 2nn 11062 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
44 nnmulcl 10920 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
4543, 1, 44sylancr 694 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ∈ ℕ)
4645nnred 10912 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) ∈ ℝ)
47 3re 10971 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
48 3pos 10991 . . . . . . . . . . . . . . . 16 0 < 3
4947, 48pm3.2i 470 . . . . . . . . . . . . . . 15 (3 ∈ ℝ ∧ 0 < 3)
50 ltdiv23 10793 . . . . . . . . . . . . . . 15 (((2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5149, 50mp3an2 1404 . . . . . . . . . . . . . 14 (((2 · 𝑁) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5246, 22, 23, 51syl12anc 1316 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ ((2 · 𝑁) / 𝑃) < 3))
5342, 52mpbid 221 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) < 3)
54 df-3 10957 . . . . . . . . . . . 12 3 = (2 + 1)
5553, 54syl6breq 4624 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 𝑃) < (2 + 1))
5646, 10nndivred 10946 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) / 𝑃) ∈ ℝ)
57 2z 11286 . . . . . . . . . . . 12 2 ∈ ℤ
58 flbi 12479 . . . . . . . . . . . 12 ((((2 · 𝑁) / 𝑃) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
5956, 57, 58sylancl 693 . . . . . . . . . . 11 (𝜑 → ((⌊‘((2 · 𝑁) / 𝑃)) = 2 ↔ (2 ≤ ((2 · 𝑁) / 𝑃) ∧ ((2 · 𝑁) / 𝑃) < (2 + 1))))
6041, 55, 59mpbir2and 959 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6160adantr 480 . . . . . . . . 9 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / 𝑃)) = 2)
6215, 61eqtrd 2644 . . . . . . . 8 ((𝜑𝑘 = 1) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 2)
6313oveq2d 6565 . . . . . . . . . . . 12 ((𝜑𝑘 = 1) → (𝑁 / (𝑃𝑘)) = (𝑁 / 𝑃))
6463fveq2d 6107 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = (⌊‘(𝑁 / 𝑃)))
65 remulcl 9900 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑁 / 𝑃) ∈ ℝ) → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6629, 27, 65sylancr 694 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) ∈ ℝ)
6747a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
68 4re 10974 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
6968a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 4 ∈ ℝ)
7040, 53eqbrtrrd 4607 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑁 / 𝑃)) < 3)
71 3lt4 11074 . . . . . . . . . . . . . . . . . 18 3 < 4
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 < 4)
7366, 67, 69, 70, 72lttrd 10077 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝑁 / 𝑃)) < 4)
74 2t2e4 11054 . . . . . . . . . . . . . . . 16 (2 · 2) = 4
7573, 74syl6breqr 4625 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (𝑁 / 𝑃)) < (2 · 2))
76 ltmul2 10753 . . . . . . . . . . . . . . . . 17 (((𝑁 / 𝑃) ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7729, 31, 76mp3an23 1408 . . . . . . . . . . . . . . . 16 ((𝑁 / 𝑃) ∈ ℝ → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7827, 77syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 / 𝑃) < 2 ↔ (2 · (𝑁 / 𝑃)) < (2 · 2)))
7975, 78mpbird 246 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 𝑃) < 2)
80 df-2 10956 . . . . . . . . . . . . . 14 2 = (1 + 1)
8179, 80syl6breq 4624 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) < (1 + 1))
82 1z 11284 . . . . . . . . . . . . . 14 1 ∈ ℤ
83 flbi 12479 . . . . . . . . . . . . . 14 (((𝑁 / 𝑃) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8427, 82, 83sylancl 693 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(𝑁 / 𝑃)) = 1 ↔ (1 ≤ (𝑁 / 𝑃) ∧ (𝑁 / 𝑃) < (1 + 1))))
8526, 81, 84mpbir2and 959 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑁 / 𝑃)) = 1)
8685adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / 𝑃)) = 1)
8764, 86eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑘 = 1) → (⌊‘(𝑁 / (𝑃𝑘))) = 1)
8887oveq2d 6565 . . . . . . . . 9 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 1))
8988, 16syl6eq 2660 . . . . . . . 8 ((𝜑𝑘 = 1) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 2)
9062, 89oveq12d 6567 . . . . . . 7 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (2 − 2))
91 2cn 10968 . . . . . . . 8 2 ∈ ℂ
9291subidi 10231 . . . . . . 7 (2 − 2) = 0
9390, 92syl6eq 2660 . . . . . 6 ((𝜑𝑘 = 1) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
9445nnrpd 11746 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9594adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ+)
96 eluzge2nn0 11603 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
97 nnexpcl 12735 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
9810, 96, 97syl2an 493 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℕ)
9998nnrpd 11746 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ+)
10095, 99rpdivcld 11765 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
101100rpge0d 11752 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
10246adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) ∈ ℝ)
103 remulcl 9900 . . . . . . . . . . . . . . 15 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (3 · 𝑃) ∈ ℝ)
10447, 22, 103sylancr 694 . . . . . . . . . . . . . 14 (𝜑 → (3 · 𝑃) ∈ ℝ)
105104adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ∈ ℝ)
10698nnred 10912 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℝ)
107 ltdivmul 10777 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10849, 107mp3an3 1405 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
10946, 22, 108syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) / 3) < 𝑃 ↔ (2 · 𝑁) < (3 · 𝑃)))
11042, 109mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝑁) < (3 · 𝑃))
111110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (3 · 𝑃))
11222, 22remulcld 9949 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 · 𝑃) ∈ ℝ)
113112adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ∈ ℝ)
114 bposlem2.3 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 𝑃)
115 nnltp1le 11310 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
11643, 10, 115sylancr 694 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 < 𝑃 ↔ (2 + 1) ≤ 𝑃))
117114, 116mpbid 221 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + 1) ≤ 𝑃)
11854, 117syl5eqbr 4618 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ≤ 𝑃)
119 lemul1 10754 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12047, 119mp3an1 1403 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
12122, 22, 23, 120syl12anc 1316 . . . . . . . . . . . . . . . 16 (𝜑 → (3 ≤ 𝑃 ↔ (3 · 𝑃) ≤ (𝑃 · 𝑃)))
122118, 121mpbid 221 . . . . . . . . . . . . . . 15 (𝜑 → (3 · 𝑃) ≤ (𝑃 · 𝑃))
123122adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃 · 𝑃))
12411sqvald 12867 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
125124adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) = (𝑃 · 𝑃))
12622adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
12710nnge1d 10940 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑃)
128127adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ≤ 𝑃)
129 simpr 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ (ℤ‘2))
130126, 128, 129leexp2ad 12903 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃↑2) ≤ (𝑃𝑘))
131125, 130eqbrtrrd 4607 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃 · 𝑃) ≤ (𝑃𝑘))
132105, 113, 106, 123, 131letrd 10073 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (3 · 𝑃) ≤ (𝑃𝑘))
133102, 105, 106, 111, 132ltletrd 10076 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < (𝑃𝑘))
13498nncnd 10913 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑃𝑘) ∈ ℂ)
135134mulid1d 9936 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑃𝑘) · 1) = (𝑃𝑘))
136133, 135breqtrrd 4611 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · 𝑁) < ((𝑃𝑘) · 1))
137 1red 9934 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ∈ ℝ)
138102, 137, 99ltdivmuld 11799 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
139136, 138mpbird 246 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
140 1e0p1 11428 . . . . . . . . . 10 1 = (0 + 1)
141139, 140syl6breq 4624 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
142100rpred 11748 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
143 0z 11265 . . . . . . . . . 10 0 ∈ ℤ
144 flbi 12479 . . . . . . . . . 10 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
145142, 143, 144sylancl 693 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
146101, 141, 145mpbir2and 959 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
1471nnrpd 11746 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ+)
148147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ+)
149148, 99rpdivcld 11765 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
150149rpge0d 11752 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → 0 ≤ (𝑁 / (𝑃𝑘)))
15121adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
15221, 147ltaddrpd 11781 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 < (𝑁 + 𝑁))
153382timesd 11152 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
154152, 153breqtrrd 4611 . . . . . . . . . . . . . . . 16 (𝜑𝑁 < (2 · 𝑁))
155154adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (2 · 𝑁))
156151, 102, 106, 155, 133lttrd 10077 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < (𝑃𝑘))
157156, 135breqtrrd 4611 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑁 < ((𝑃𝑘) · 1))
158151, 137, 99ltdivmuld 11799 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
159157, 158mpbird 246 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < 1)
160159, 140syl6breq 4624 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) < (0 + 1))
161149rpred 11748 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
162 flbi 12479 . . . . . . . . . . . 12 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
163161, 143, 162sylancl 693 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
164150, 160, 163mpbir2and 959 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
165164oveq2d 6565 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
166 2t0e0 11060 . . . . . . . . 9 (2 · 0) = 0
167165, 166syl6eq 2660 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
168146, 167oveq12d 6567 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
169 0m0e0 11007 . . . . . . 7 (0 − 0) = 0
170168, 169syl6eq 2660 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘2)) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
17193, 170jaodan 822 . . . . 5 ((𝜑 ∧ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1727, 171sylan2 490 . . . 4 ((𝜑𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
173172sumeq2dv 14281 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))0)
174 fzfid 12634 . . . 4 (𝜑 → (1...(2 · 𝑁)) ∈ Fin)
175 sumz 14300 . . . . 5 (((1...(2 · 𝑁)) ⊆ (ℤ‘1) ∨ (1...(2 · 𝑁)) ∈ Fin) → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
176175olcs 409 . . . 4 ((1...(2 · 𝑁)) ∈ Fin → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
177174, 176syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))0 = 0)
178173, 177eqtrd 2644 . 2 (𝜑 → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
1794, 178eqtrd 2644 1 (𝜑 → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  3c3 10948  4c4 10949  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ...cfz 12197  ⌊cfl 12453  ↑cexp 12722  Ccbc 12951  Σcsu 14264  ℙcprime 15223   pCnt cpc 15379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380 This theorem is referenced by:  bposlem3  24811
 Copyright terms: Public domain W3C validator