MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem1 Structured version   Visualization version   GIF version

Theorem bposlem1 24809
Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.)
Assertion
Ref Expression
bposlem1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))

Proof of Theorem bposlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12634 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(2 · 𝑁)) ∈ Fin)
2 2nn 11062 . . . . . . . . . . 11 2 ∈ ℕ
3 nnmulcl 10920 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
42, 3mpan 702 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
54ad2antrr 758 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℕ)
6 prmnn 15226 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
76ad2antlr 759 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑃 ∈ ℕ)
8 elfznn 12241 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
98adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ)
109nnnn0d 11228 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ0)
117, 10nnexpcld 12892 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
12 nnrp 11718 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
13 nnrp 11718 . . . . . . . . . 10 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℝ+)
14 rpdivcl 11732 . . . . . . . . . 10 (((2 · 𝑁) ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1512, 13, 14syl2an 493 . . . . . . . . 9 (((2 · 𝑁) ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
165, 11, 15syl2anc 691 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1716rpred 11748 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
1817flcld 12461 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℤ)
19 2z 11286 . . . . . . 7 2 ∈ ℤ
20 simpll 786 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℕ)
21 nnrp 11718 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
22 rpdivcl 11732 . . . . . . . . . . 11 ((𝑁 ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2321, 13, 22syl2an 493 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2420, 11, 23syl2anc 691 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2524rpred 11748 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2625flcld 12461 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
27 zmulcl 11303 . . . . . . 7 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2819, 26, 27sylancr 694 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2918, 28zsubcld 11363 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ)
3029zred 11358 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
31 1re 9918 . . . . . 6 1 ∈ ℝ
32 0re 9919 . . . . . 6 0 ∈ ℝ
3331, 32keepel 4105 . . . . 5 if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ
3433a1i 11 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ)
3528zred 11358 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℝ)
3617, 35resubcld 10337 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
37 2re 10967 . . . . . . . . . 10 2 ∈ ℝ
3837a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℝ)
3918zred 11358 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℝ)
40 flle 12462 . . . . . . . . . . 11 (((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4117, 40syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4239, 17, 35, 41lesub1dd 10522 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
43 resubcl 10224 . . . . . . . . . . . . 13 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
4425, 31, 43sylancl 693 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
45 remulcl 9900 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
4637, 44, 45sylancr 694 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
47 flltp1 12463 . . . . . . . . . . . . . 14 ((𝑁 / (𝑃𝑘)) ∈ ℝ → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
4825, 47syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
49 1red 9934 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℝ)
5026zred 11358 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ)
5125, 49, 50ltsubaddd 10502 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1)))
5248, 51mpbird 246 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))))
53 2pos 10989 . . . . . . . . . . . . . . 15 0 < 2
5437, 53pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
55 ltmul2 10753 . . . . . . . . . . . . . 14 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5654, 55mp3an3 1405 . . . . . . . . . . . . 13 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5744, 50, 56syl2anc 691 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5852, 57mpbid 221 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
5946, 35, 17, 58ltsub2dd 10519 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))))
60 2cnd 10970 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℂ)
61 nncn 10905 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6261ad2antrr 758 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℂ)
6311nncnd 10913 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℂ)
6411nnne0d 10942 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ≠ 0)
6560, 62, 63, 64divassd 10715 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) = (2 · (𝑁 / (𝑃𝑘))))
6625recnd 9947 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℂ)
67 1cnd 9935 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℂ)
6860, 66, 67subdid 10365 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) = ((2 · (𝑁 / (𝑃𝑘))) − (2 · 1)))
69 2t1e2 11053 . . . . . . . . . . . . . 14 (2 · 1) = 2
7069oveq2i 6560 . . . . . . . . . . . . 13 ((2 · (𝑁 / (𝑃𝑘))) − (2 · 1)) = ((2 · (𝑁 / (𝑃𝑘))) − 2)
7168, 70syl6eq 2660 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) = ((2 · (𝑁 / (𝑃𝑘))) − 2))
7265, 71oveq12d 6567 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)))
73 remulcl 9900 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑁 / (𝑃𝑘)) ∈ ℝ) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7437, 25, 73sylancr 694 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7574recnd 9947 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℂ)
76 2cn 10968 . . . . . . . . . . . 12 2 ∈ ℂ
77 nncan 10189 . . . . . . . . . . . 12 (((2 · (𝑁 / (𝑃𝑘))) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7875, 76, 77sylancl 693 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7972, 78eqtrd 2644 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = 2)
8059, 79breqtrd 4609 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
8130, 36, 38, 42, 80lelttrd 10074 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
82 df-2 10956 . . . . . . . 8 2 = (1 + 1)
8381, 82syl6breq 4624 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1))
84 1z 11284 . . . . . . . 8 1 ∈ ℤ
85 zleltp1 11305 . . . . . . . 8 ((((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ ∧ 1 ∈ ℤ) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8629, 84, 85sylancl 693 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8783, 86mpbird 246 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1)
88 iftrue 4042 . . . . . . 7 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 1)
8988breq2d 4595 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1))
9087, 89syl5ibrcom 236 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
919nnge1d 10940 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ≤ 𝑘)
9291biantrurd 528 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
936adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
9493nnred 10912 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
95 prmuz2 15246 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
9695adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
97 eluz2b1 11635 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
9897simprbi 479 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
9996, 98syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 𝑃)
10094, 99jca 553 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
101100adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
102 elfzelz 12213 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℤ)
103102adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
1044adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
105104nnrpd 11746 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ+)
106105adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ+)
107 efexple 24806 . . . . . . . . . . 11 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑘 ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
108101, 103, 106, 107syl3anc 1318 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
1099nnzd 11357 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
11084a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℤ)
111104nnred 10912 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
112 1red 9934 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
11337a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ∈ ℝ)
114 1lt2 11071 . . . . . . . . . . . . . . . . . 18 1 < 2
115114a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 2)
116 nnre 10904 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
117116adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
118 0le2 10988 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 2
11937, 118pm3.2i 470 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℝ ∧ 0 ≤ 2)
120119a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℝ ∧ 0 ≤ 2))
121 nnge1 10923 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
122121adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ≤ 𝑁)
123 lemul2a 10757 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) ∧ 1 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑁))
124112, 117, 120, 122, 123syl31anc 1321 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 1) ≤ (2 · 𝑁))
12569, 124syl5eqbrr 4619 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ≤ (2 · 𝑁))
126112, 113, 111, 115, 125ltletrd 10076 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < (2 · 𝑁))
127111, 126rplogcld 24179 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ+)
12894, 99rplogcld 24179 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ+)
129127, 128rpdivcld 11765 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ+)
130129rpred 11748 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ)
131130flcld 12461 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
132131adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
133 elfz 12203 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
134109, 110, 132, 133syl3anc 1318 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
13592, 108, 1343bitr4rd 300 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (𝑃𝑘) ≤ (2 · 𝑁)))
136135notbid 307 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
137111adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ)
13811nnred 10912 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℝ)
139137, 138ltnled 10063 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
140136, 139bitr4d 270 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (2 · 𝑁) < (𝑃𝑘)))
14116rpge0d 11752 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
142141adantrr 749 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
14311nngt0d 10941 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 < (𝑃𝑘))
144 ltdivmul 10777 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
145137, 49, 138, 143, 144syl112anc 1322 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
14663mulid1d 9936 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) · 1) = (𝑃𝑘))
147146breq2d 4595 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < ((𝑃𝑘) · 1) ↔ (2 · 𝑁) < (𝑃𝑘)))
148145, 147bitrd 267 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < (𝑃𝑘)))
149148biimprd 237 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((2 · 𝑁) / (𝑃𝑘)) < 1))
150149impr 647 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
151 0p1e1 11009 . . . . . . . . . . . . 13 (0 + 1) = 1
152150, 151syl6breqr 4625 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
15317adantrr 749 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
154 0z 11265 . . . . . . . . . . . . 13 0 ∈ ℤ
155 flbi 12479 . . . . . . . . . . . . 13 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
156153, 154, 155sylancl 693 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
157142, 152, 156mpbir2and 959 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
15824rpge0d 11752 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ (𝑁 / (𝑃𝑘)))
159158adantrr 749 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ (𝑁 / (𝑃𝑘)))
160116, 21ltaddrp2d 11782 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 𝑁))
161612timesd 11152 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
162160, 161breqtrrd 4611 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 < (2 · 𝑁))
163162ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 < (2 · 𝑁))
164116ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
165 lttr 9993 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑃𝑘) ∈ ℝ) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
166164, 137, 138, 165syl3anc 1318 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
167163, 166mpand 707 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → 𝑁 < (𝑃𝑘)))
168 ltdivmul 10777 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
169164, 49, 138, 143, 168syl112anc 1322 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
170146breq2d 4595 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 < ((𝑃𝑘) · 1) ↔ 𝑁 < (𝑃𝑘)))
171169, 170bitrd 267 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < (𝑃𝑘)))
172167, 171sylibrd 248 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → (𝑁 / (𝑃𝑘)) < 1))
173172impr 647 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < 1)
174173, 151syl6breqr 4625 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < (0 + 1))
17525adantrr 749 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
176 flbi 12479 . . . . . . . . . . . . . . 15 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
177175, 154, 176sylancl 693 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
178159, 174, 177mpbir2and 959 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
179178oveq2d 6565 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
180 2t0e0 11060 . . . . . . . . . . . 12 (2 · 0) = 0
181179, 180syl6eq 2660 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
182157, 181oveq12d 6567 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
183 0m0e0 11007 . . . . . . . . . 10 (0 − 0) = 0
184182, 183syl6eq 2660 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
185 0le0 10987 . . . . . . . . 9 0 ≤ 0
186184, 185syl6eqbr 4622 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0)
187186expr 641 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
188140, 187sylbid 229 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
189 iffalse 4045 . . . . . . . 8 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 0)
190189eqcomd 2616 . . . . . . 7 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → 0 = if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
191190breq2d 4595 . . . . . 6 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
192188, 191mpbidi 230 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
19390, 192pm2.61d 169 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
1941, 30, 34, 193fsumle 14372 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
195 pcbcctr 24801 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
196131zred 11358 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℝ)
197 flle 12462 . . . . . . . . 9 (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
198130, 197syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
199104nnnn0d 11228 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ0)
20093, 199nnexpcld 12892 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℕ)
201200nnred 10912 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℝ)
202 bernneq3 12854 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℕ0) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
20396, 199, 202syl2anc 691 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
204111, 201, 203ltled 10064 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ≤ (𝑃↑(2 · 𝑁)))
205105reeflogd 24174 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
20693nnrpd 11746 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ+)
207104nnzd 11357 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℤ)
208 reexplog 24145 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ+ ∧ (2 · 𝑁) ∈ ℤ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
209206, 207, 208syl2anc 691 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
210209eqcomd 2616 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘((2 · 𝑁) · (log‘𝑃))) = (𝑃↑(2 · 𝑁)))
211204, 205, 2103brtr4d 4615 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃))))
212105relogcld 24173 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ)
213128rpred 11748 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ)
214111, 213remulcld 9949 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ)
215 efle 14687 . . . . . . . . . . 11 (((log‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
216212, 214, 215syl2anc 691 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
217211, 216mpbird 246 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)))
218212, 111, 128ledivmul2d 11802 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁) ↔ (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃))))
219217, 218mpbird 246 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁))
220196, 130, 111, 198, 219letrd 10073 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁))
221 eluz 11577 . . . . . . . 8 (((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
222131, 207, 221syl2anc 691 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
223220, 222mpbird 246 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
224 fzss2 12252 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
225223, 224syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
226 sumhash 15438 . . . . 5 (((1...(2 · 𝑁)) ∈ Fin ∧ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁))) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (#‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
2271, 225, 226syl2anc 691 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (#‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
228129rprege0d 11755 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))))
229 flge0nn0 12483 . . . . 5 ((((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0)
230 hashfz1 12996 . . . . 5 ((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0 → (#‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
231228, 229, 2303syl 18 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (#‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
232227, 231eqtr2d 2645 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) = Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
233194, 195, 2323brtr4d 4615 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
234 simpr 476 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
235 nnnn0 11176 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
236 fzctr 12320 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
237 bccl2 12972 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
238235, 236, 2373syl 18 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁)C𝑁) ∈ ℕ)
239238adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
240234, 239pccld 15393 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
241240nn0zd 11356 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
242 efexple 24806 . . 3 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
24394, 99, 241, 105, 242syl211anc 1324 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
244233, 243mpbird 246 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  cfl 12453  cexp 12722  Ccbc 12951  #chash 12979  Σcsu 14264  expce 14631  cprime 15223   pCnt cpc 15379  logclog 24105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107
This theorem is referenced by:  bposlem5  24813  bposlem6  24814  chebbnd1lem1  24958
  Copyright terms: Public domain W3C validator