Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolylem Structured version   Visualization version   GIF version

Theorem bpolylem 14618
 Description: Lemma for bpolyval 14619. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
bpoly.1 𝐺 = (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
bpoly.2 𝐹 = wrecs( < , ℕ0, 𝐺)
Assertion
Ref Expression
bpolylem ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝐹   𝑔,𝑁,𝑘,𝑛   𝑔,𝑋,𝑘,𝑛
Allowed substitution hints:   𝐺(𝑔,𝑘,𝑛)

Proof of Theorem bpolylem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
21oveq1d 6564 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32csbeq2dv 3944 . . . . . . . . 9 (𝑥 = 𝑋(#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
43mpteq2dv 4673 . . . . . . . 8 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))
5 bpoly.1 . . . . . . . 8 𝐺 = (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
64, 5syl6eqr 2662 . . . . . . 7 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺)
7 wrecseq3 7299 . . . . . . 7 ((𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
86, 7syl 17 . . . . . 6 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
9 bpoly.2 . . . . . 6 𝐹 = wrecs( < , ℕ0, 𝐺)
108, 9syl6eqr 2662 . . . . 5 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = 𝐹)
1110fveq1d 6105 . . . 4 (𝑥 = 𝑋 → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑚))
12 fveq2 6103 . . . 4 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
1311, 12sylan9eqr 2666 . . 3 ((𝑚 = 𝑁𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑁))
14 df-bpoly 14617 . . 3 BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚))
15 fvex 6113 . . 3 (𝐹𝑁) ∈ V
1613, 14, 15ovmpt2a 6689 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = (𝐹𝑁))
17 ltweuz 12622 . . . . 5 < We (ℤ‘0)
18 nn0uz 11598 . . . . . 6 0 = (ℤ‘0)
19 weeq2 5027 . . . . . 6 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
2018, 19ax-mp 5 . . . . 5 ( < We ℕ0 ↔ < We (ℤ‘0))
2117, 20mpbir 220 . . . 4 < We ℕ0
22 nn0ex 11175 . . . . 5 0 ∈ V
23 exse 5002 . . . . 5 (ℕ0 ∈ V → < Se ℕ0)
2422, 23ax-mp 5 . . . 4 < Se ℕ0
2521, 24, 9wfr2 7321 . . 3 (𝑁 ∈ ℕ0 → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
2625adantr 480 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
27 prednn0 12332 . . . . . 6 (𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
2827adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
2928reseq2d 5317 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹 ↾ Pred( < , ℕ0, 𝑁)) = (𝐹 ↾ (0...(𝑁 − 1))))
3029fveq2d 6107 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))))
3121, 24, 9wfrfun 7312 . . . . . 6 Fun 𝐹
32 ovex 6577 . . . . . 6 (0...(𝑁 − 1)) ∈ V
33 resfunexg 6384 . . . . . 6 ((Fun 𝐹 ∧ (0...(𝑁 − 1)) ∈ V) → (𝐹 ↾ (0...(𝑁 − 1))) ∈ V)
3431, 32, 33mp2an 704 . . . . 5 (𝐹 ↾ (0...(𝑁 − 1))) ∈ V
35 dmeq 5246 . . . . . . . . . . 11 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = dom (𝐹 ↾ (0...(𝑁 − 1))))
3621, 24, 9wfr1 7320 . . . . . . . . . . . . 13 𝐹 Fn ℕ0
37 fz0ssnn0 12304 . . . . . . . . . . . . 13 (0...(𝑁 − 1)) ⊆ ℕ0
38 fnssres 5918 . . . . . . . . . . . . 13 ((𝐹 Fn ℕ0 ∧ (0...(𝑁 − 1)) ⊆ ℕ0) → (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1)))
3936, 37, 38mp2an 704 . . . . . . . . . . . 12 (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1))
40 fndm 5904 . . . . . . . . . . . 12 ((𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1)) → dom (𝐹 ↾ (0...(𝑁 − 1))) = (0...(𝑁 − 1)))
4139, 40ax-mp 5 . . . . . . . . . . 11 dom (𝐹 ↾ (0...(𝑁 − 1))) = (0...(𝑁 − 1))
4235, 41syl6eq 2660 . . . . . . . . . 10 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = (0...(𝑁 − 1)))
43 fveq1 6102 . . . . . . . . . . . . 13 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (𝑔𝑘) = ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘))
44 fvres 6117 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘) = (𝐹𝑘))
4543, 44sylan9eq 2664 . . . . . . . . . . . 12 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑔𝑘) = (𝐹𝑘))
4645oveq1d 6564 . . . . . . . . . . 11 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑔𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑛𝑘) + 1)))
4746oveq2d 6565 . . . . . . . . . 10 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
4842, 47sumeq12rdv 14285 . . . . . . . . 9 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
4948oveq2d 6565 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5049csbeq2dv 3944 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5142fveq2d 6107 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (#‘dom 𝑔) = (#‘(0...(𝑁 − 1))))
5251csbeq1d 3506 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = (#‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5350, 52eqtrd 2644 . . . . . 6 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (#‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (#‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
54 ovex 6577 . . . . . . 7 ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5554csbex 4721 . . . . . 6 (#‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5653, 5, 55fvmpt 6191 . . . . 5 ((𝐹 ↾ (0...(𝑁 − 1))) ∈ V → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (#‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5734, 56ax-mp 5 . . . 4 (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (#‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
58 nfcvd 2752 . . . . . . 7 (𝑁 ∈ ℕ0𝑛((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
59 oveq2 6557 . . . . . . . 8 (𝑛 = 𝑁 → (𝑋𝑛) = (𝑋𝑁))
60 oveq1 6556 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
61 oveq1 6556 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
6261oveq1d 6564 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝑛𝑘) + 1) = ((𝑁𝑘) + 1))
6362oveq2d 6565 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝐹𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
6460, 63oveq12d 6567 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6564sumeq2sdv 14282 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6659, 65oveq12d 6567 . . . . . . 7 (𝑛 = 𝑁 → ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6758, 66csbiegf 3523 . . . . . 6 (𝑁 ∈ ℕ0𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6867adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
69 nn0z 11277 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
70 fz01en 12240 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
7169, 70syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (0...(𝑁 − 1)) ≈ (1...𝑁))
72 fzfi 12633 . . . . . . . . . 10 (0...(𝑁 − 1)) ∈ Fin
73 fzfi 12633 . . . . . . . . . 10 (1...𝑁) ∈ Fin
74 hashen 12997 . . . . . . . . . 10 (((0...(𝑁 − 1)) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((#‘(0...(𝑁 − 1))) = (#‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁)))
7572, 73, 74mp2an 704 . . . . . . . . 9 ((#‘(0...(𝑁 − 1))) = (#‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁))
7671, 75sylibr 223 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#‘(0...(𝑁 − 1))) = (#‘(1...𝑁)))
77 hashfz1 12996 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
7876, 77eqtrd 2644 . . . . . . 7 (𝑁 ∈ ℕ0 → (#‘(0...(𝑁 − 1))) = 𝑁)
7978adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (#‘(0...(𝑁 − 1))) = 𝑁)
8079csbeq1d 3506 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (#‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
81 elfznn0 12302 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
82 simpr 476 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
83 fveq2 6103 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8411, 83sylan9eqr 2666 . . . . . . . . . . 11 ((𝑚 = 𝑘𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (#‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑘))
85 fvex 6113 . . . . . . . . . . 11 (𝐹𝑘) ∈ V
8684, 14, 85ovmpt2a 6689 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8781, 82, 86syl2anr 494 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8887oveq1d 6564 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
8988oveq2d 6565 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9089sumeq2dv 14281 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9190oveq2d 6565 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
9268, 80, 913eqtr4d 2654 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (#‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9357, 92syl5eq 2656 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9430, 93eqtrd 2644 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9516, 26, 943eqtrd 2648 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ⦋csb 3499   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643   Se wse 4995   We wwe 4996  dom cdm 5038   ↾ cres 5040  Predcpred 5596  Fun wfun 5798   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549  wrecscwrecs 7293   ≈ cen 7838  Fincfn 7841  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   − cmin 10145   / cdiv 10563  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ↑cexp 12722  Ccbc 12951  #chash 12979  Σcsu 14264   BernPoly cbp 14616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-hash 12980  df-sum 14265  df-bpoly 14617 This theorem is referenced by:  bpolyval  14619
 Copyright terms: Public domain W3C validator