Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bocardo Structured version   Visualization version   GIF version

Theorem bocardo 2566
 Description: "Bocardo", one of the syllogisms of Aristotelian logic. Some 𝜑 is not 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, OAO-3: MoP and MaS therefore SoP.) For example, "Some cats have no tails", "All cats are mammals", therefore "Some mammals have no tails". A reorder of disamis 2564; prefer using that instead. (Contributed by David A. Wheeler, 28-Aug-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bocardo.maj 𝑥(𝜑 ∧ ¬ 𝜓)
bocardo.min 𝑥(𝜑𝜒)
Assertion
Ref Expression
bocardo 𝑥(𝜒 ∧ ¬ 𝜓)

Proof of Theorem bocardo
StepHypRef Expression
1 bocardo.maj . 2 𝑥(𝜑 ∧ ¬ 𝜓)
2 bocardo.min . 2 𝑥(𝜑𝜒)
31, 2disamis 2564 1 𝑥(𝜒 ∧ ¬ 𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator