Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj97 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 30200. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj96.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj97 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj93 30187 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
2 | 0ex 4718 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | bnj519 30058 | . . . 4 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun {〈∅, pred(𝑥, 𝐴, 𝑅)〉}) |
4 | bnj96.1 | . . . . 5 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
5 | 4 | funeqi 5824 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {〈∅, pred(𝑥, 𝐴, 𝑅)〉}) |
6 | 3, 5 | sylibr 223 | . . 3 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun 𝐹) |
7 | 1, 6 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
8 | opex 4859 | . . . 4 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ V | |
9 | 8 | snid 4155 | . . 3 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
10 | 9, 4 | eleqtrri 2687 | . 2 ⊢ 〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ 𝐹 |
11 | funopfv 6145 | . 2 ⊢ (Fun 𝐹 → (〈∅, pred(𝑥, 𝐴, 𝑅)〉 ∈ 𝐹 → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))) | |
12 | 7, 10, 11 | mpisyl 21 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∅c0 3874 {csn 4125 〈cop 4131 Fun wfun 5798 ‘cfv 5804 predc-bnj14 30007 FrSe w-bnj15 30011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-bnj13 30010 df-bnj15 30012 |
This theorem is referenced by: bnj150 30200 |
Copyright terms: Public domain | W3C validator |