Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj953 Structured version   Visualization version   GIF version

Theorem bnj953 30263
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj953.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj953.2 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
Assertion
Ref Expression
bnj953 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))

Proof of Theorem bnj953
StepHypRef Expression
1 bnj312 30031 . . 3 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝐺𝑖) = (𝑓𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))
2 bnj251 30021 . . 3 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝐺𝑖) = (𝑓𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))))
31, 2bitri 263 . 2 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))))
4 bnj953.1 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
54bnj115 30045 . . . . 5 (𝜓 ↔ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
6 sp 2041 . . . . . 6 (∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → ((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
76impcom 445 . . . . 5 (((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
85, 7sylan2b 491 . . . 4 (((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
9 bnj953.2 . . . . 5 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
109bnj956 30101 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
11 eqtr3 2631 . . . 4 (((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ∧ 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
128, 10, 11syl2anr 494 . . 3 (((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
13 eqtr 2629 . . 3 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
1412, 13sylan2 490 . 2 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
153, 14sylbi 206 1 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896   ciun 4455  suc csuc 5642  cfv 5804  ωcom 6957  w-bnj17 30005   predc-bnj14 30007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-ral 2901  df-rex 2902  df-iun 4457  df-bnj17 30006
This theorem is referenced by:  bnj967  30269
  Copyright terms: Public domain W3C validator