Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj89 Structured version   Visualization version   GIF version

Theorem bnj89 30041
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj89.1 𝑍 ∈ V
Assertion
Ref Expression
bnj89 ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑍   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑍(𝑦)

Proof of Theorem bnj89
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbcex2 3453 . . 3 ([𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤[𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤))
2 sbcal 3452 . . . 4 ([𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤))
32exbii 1764 . . 3 (∃𝑤[𝑍 / 𝑦]𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤))
4 bnj89.1 . . . . . . 7 𝑍 ∈ V
5 sbcbig 3447 . . . . . . 7 (𝑍 ∈ V → ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤)))
64, 5ax-mp 5 . . . . . 6 ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤))
7 sbcg 3470 . . . . . . . 8 (𝑍 ∈ V → ([𝑍 / 𝑦]𝑥 = 𝑤𝑥 = 𝑤))
84, 7ax-mp 5 . . . . . . 7 ([𝑍 / 𝑦]𝑥 = 𝑤𝑥 = 𝑤)
98bibi2i 326 . . . . . 6 (([𝑍 / 𝑦]𝜑[𝑍 / 𝑦]𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
106, 9bitri 263 . . . . 5 ([𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1110albii 1737 . . . 4 (∀𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ∀𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1211exbii 1764 . . 3 (∃𝑤𝑥[𝑍 / 𝑦](𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
131, 3, 123bitri 285 . 2 ([𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
14 df-eu 2462 . . 3 (∃!𝑥𝜑 ↔ ∃𝑤𝑥(𝜑𝑥 = 𝑤))
1514sbcbii 3458 . 2 ([𝑍 / 𝑦]∃!𝑥𝜑[𝑍 / 𝑦]𝑤𝑥(𝜑𝑥 = 𝑤))
16 df-eu 2462 . 2 (∃!𝑥[𝑍 / 𝑦]𝜑 ↔ ∃𝑤𝑥([𝑍 / 𝑦]𝜑𝑥 = 𝑤))
1713, 15, 163bitr4i 291 1 ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195  ∀wal 1473  ∃wex 1695   ∈ wcel 1977  ∃!weu 2458  Vcvv 3173  [wsbc 3402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175  df-sbc 3403 This theorem is referenced by:  bnj130  30198  bnj207  30205
 Copyright terms: Public domain W3C validator