Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj591 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 30245. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj591.1 | ⊢ (𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
Ref | Expression |
---|---|
bnj591 | ⊢ ([𝑘 / 𝑗]𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj591.1 | . . 3 ⊢ (𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) | |
2 | 1 | sbcbii 3458 | . 2 ⊢ ([𝑘 / 𝑗]𝜃 ↔ [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
3 | vex 3176 | . . 3 ⊢ 𝑘 ∈ V | |
4 | fveq2 6103 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑓‘𝑗) = (𝑓‘𝑘)) | |
5 | fveq2 6103 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑔‘𝑗) = (𝑔‘𝑘)) | |
6 | 4, 5 | eqeq12d 2625 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑓‘𝑗) = (𝑔‘𝑗) ↔ (𝑓‘𝑘) = (𝑔‘𝑘))) |
7 | 6 | imbi2d 329 | . . 3 ⊢ (𝑗 = 𝑘 → (((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘)))) |
8 | 3, 7 | sbcie 3437 | . 2 ⊢ ([𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
9 | 2, 8 | bitri 263 | 1 ⊢ ([𝑘 / 𝑗]𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 [wsbc 3402 ‘cfv 5804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 |
This theorem is referenced by: bnj580 30237 |
Copyright terms: Public domain | W3C validator |