Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj558 Structured version   Visualization version   GIF version

Theorem bnj558 30226
Description: Technical lemma for bnj852 30245. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj558.3 𝐷 = (ω ∖ {∅})
bnj558.16 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj558.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj558.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj558.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj558.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj558.21 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj558.22 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj558.23 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj558.24 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj558.25 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj558.28 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj558.29 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj558.36 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj558 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺‘suc 𝑖) = 𝐾)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑦,𝐺   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj558
StepHypRef Expression
1 bnj558.3 . . 3 𝐷 = (ω ∖ {∅})
2 bnj558.16 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
3 bnj558.17 . . 3 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
4 bnj558.18 . . 3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
5 bnj558.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
6 bnj558.20 . . 3 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
7 bnj558.21 . . 3 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
8 bnj558.22 . . 3 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
9 bnj558.23 . . 3 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
10 bnj558.24 . . 3 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
11 bnj558.25 . . 3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
12 bnj558.28 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
13 bnj558.29 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
14 bnj558.36 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14bnj557 30225 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺𝑚) = 𝐿)
16 bnj422 30034 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) ↔ (𝜂𝜁𝑅 FrSe 𝐴𝜏))
17 bnj253 30023 . . . . 5 ((𝜂𝜁𝑅 FrSe 𝐴𝜏) ↔ ((𝜂𝜁) ∧ 𝑅 FrSe 𝐴𝜏))
1816, 17bitri 263 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) ↔ ((𝜂𝜁) ∧ 𝑅 FrSe 𝐴𝜏))
1918simp1bi 1069 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝜂𝜁))
205, 6, 9, 10, 9, 10bnj554 30223 . . 3 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
2119, 20syl 17 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
2215, 21mpbid 221 1 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺‘suc 𝑖) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cdif 3537  cun 3538  c0 3874  {csn 4125  cop 4131   ciun 4455  suc csuc 5642   Fn wfn 5799  cfv 5804  ωcom 6957  w-bnj17 30005   predc-bnj14 30007   FrSe w-bnj15 30011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-reg 8380
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-eprel 4949  df-id 4953  df-fr 4997  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-bnj17 30006
This theorem is referenced by:  bnj571  30230
  Copyright terms: Public domain W3C validator