Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj535 Structured version   Visualization version   GIF version

Theorem bnj535 30214
Description: Technical lemma for bnj852 30245. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj535.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj535.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj535.3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj535.4 (𝜏 ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
Assertion
Ref Expression
bnj535 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj535
StepHypRef Expression
1 bnj422 30034 . . 3 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚𝑅 FrSe 𝐴𝜏))
2 bnj251 30021 . . 3 ((𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚𝑅 FrSe 𝐴𝜏) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))))
31, 2bitri 263 . 2 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))))
4 fvex 6113 . . . . . . . . 9 (𝑓𝑝) ∈ V
5 bnj535.1 . . . . . . . . . 10 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
6 bnj535.2 . . . . . . . . . 10 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
7 bnj535.4 . . . . . . . . . 10 (𝜏 ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
85, 6, 7bnj518 30210 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
9 iunexg 7035 . . . . . . . . 9 (((𝑓𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
104, 8, 9sylancr 694 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
11 vex 3176 . . . . . . . . 9 𝑚 ∈ V
1211bnj519 30058 . . . . . . . 8 ( 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → Fun {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
1310, 12syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏) → Fun {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
14 dmsnopg 5524 . . . . . . . 8 ( 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → dom {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {𝑚})
1510, 14syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏) → dom {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {𝑚})
1613, 15bnj1422 30162 . . . . . 6 ((𝑅 FrSe 𝐴𝜏) → {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚})
17 bnj521 30059 . . . . . . 7 (𝑚 ∩ {𝑚}) = ∅
18 fnun 5911 . . . . . . 7 (((𝑓 Fn 𝑚 ∧ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚}) ∧ (𝑚 ∩ {𝑚}) = ∅) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
1917, 18mpan2 703 . . . . . 6 ((𝑓 Fn 𝑚 ∧ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚}) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
2016, 19sylan2 490 . . . . 5 ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
21 bnj535.3 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
2221fneq1i 5899 . . . . 5 (𝐺 Fn (𝑚 ∪ {𝑚}) ↔ (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
2320, 22sylibr 223 . . . 4 ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → 𝐺 Fn (𝑚 ∪ {𝑚}))
24 fneq2 5894 . . . 4 (𝑛 = (𝑚 ∪ {𝑚}) → (𝐺 Fn 𝑛𝐺 Fn (𝑚 ∪ {𝑚})))
2523, 24syl5ibr 235 . . 3 (𝑛 = (𝑚 ∪ {𝑚}) → ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → 𝐺 Fn 𝑛))
2625imp 444 . 2 ((𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))) → 𝐺 Fn 𝑛)
273, 26sylbi 206 1 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  cin 3539  c0 3874  {csn 4125  cop 4131   ciun 4455  dom cdm 5038  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  cfv 5804  ωcom 6957  w-bnj17 30005   predc-bnj14 30007   FrSe w-bnj15 30011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-reg 8380
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-bnj17 30006  df-bnj14 30008  df-bnj13 30010  df-bnj15 30012
This theorem is referenced by:  bnj543  30217
  Copyright terms: Public domain W3C validator