Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj222 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj229 30208. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj222.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj222 | ⊢ (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj222.1 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
2 | suceq 5707 | . . . . 5 ⊢ (𝑖 = 𝑚 → suc 𝑖 = suc 𝑚) | |
3 | 2 | eleq1d 2672 | . . . 4 ⊢ (𝑖 = 𝑚 → (suc 𝑖 ∈ 𝑁 ↔ suc 𝑚 ∈ 𝑁)) |
4 | 2 | fveq2d 6107 | . . . . 5 ⊢ (𝑖 = 𝑚 → (𝐹‘suc 𝑖) = (𝐹‘suc 𝑚)) |
5 | fveq2 6103 | . . . . . 6 ⊢ (𝑖 = 𝑚 → (𝐹‘𝑖) = (𝐹‘𝑚)) | |
6 | 5 | bnj1113 30110 | . . . . 5 ⊢ (𝑖 = 𝑚 → ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) |
7 | 4, 6 | eqeq12d 2625 | . . . 4 ⊢ (𝑖 = 𝑚 → ((𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
8 | 3, 7 | imbi12d 333 | . . 3 ⊢ (𝑖 = 𝑚 → ((suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
9 | 8 | cbvralv 3147 | . 2 ⊢ (∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑚 ∈ ω (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
10 | 1, 9 | bitri 263 | 1 ⊢ (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∪ ciun 4455 suc csuc 5642 ‘cfv 5804 ωcom 6957 predc-bnj14 30007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-suc 5646 df-iota 5768 df-fv 5812 |
This theorem is referenced by: bnj229 30208 bnj589 30233 |
Copyright terms: Public domain | W3C validator |