Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj170 Structured version   Visualization version   GIF version

Theorem bnj170 30017
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj170 ((𝜑𝜓𝜒) ↔ ((𝜓𝜒) ∧ 𝜑))

Proof of Theorem bnj170
StepHypRef Expression
1 3anrot 1036 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 df-3an 1033 . 2 ((𝜓𝜒𝜑) ↔ ((𝜓𝜒) ∧ 𝜑))
31, 2bitri 263 1 ((𝜑𝜓𝜒) ↔ ((𝜓𝜒) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033
This theorem is referenced by:  bnj543  30217  bnj605  30231  bnj594  30236  bnj607  30240  bnj908  30255  bnj1173  30324
  Copyright terms: Public domain W3C validator