Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj170 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj170 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anrot 1036 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
2 | df-3an 1033 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) | |
3 | 1, 2 | bitri 263 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∧ w3a 1031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-3an 1033 |
This theorem is referenced by: bnj543 30217 bnj605 30231 bnj594 30236 bnj607 30240 bnj908 30255 bnj1173 30324 |
Copyright terms: Public domain | W3C validator |