Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1534 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1534.1 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} |
bnj1534.2 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
Ref | Expression |
---|---|
bnj1534 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1534.1 | . 2 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} | |
2 | nfcv 2751 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2751 | . . 3 ⊢ Ⅎ𝑧𝐴 | |
4 | nfv 1830 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) ≠ (𝐻‘𝑥) | |
5 | bnj1534.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
6 | 5 | nfcii 2742 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
7 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 7 | nffv 6110 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
9 | nfcv 2751 | . . . 4 ⊢ Ⅎ𝑥(𝐻‘𝑧) | |
10 | 8, 9 | nfne 2882 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) ≠ (𝐻‘𝑧) |
11 | fveq2 6103 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
12 | fveq2 6103 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐻‘𝑥) = (𝐻‘𝑧)) | |
13 | 11, 12 | neeq12d 2843 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≠ (𝐻‘𝑥) ↔ (𝐹‘𝑧) ≠ (𝐻‘𝑧))) |
14 | 2, 3, 4, 10, 13 | cbvrab 3171 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
15 | 1, 14 | eqtri 2632 | 1 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 {crab 2900 ‘cfv 5804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 |
This theorem is referenced by: bnj1523 30393 |
Copyright terms: Public domain | W3C validator |