Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj151 Structured version   Visualization version   GIF version

Theorem bnj151 30201
Description: Technical lemma for bnj153 30204. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj151.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj151.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj151.3 𝐷 = (ω ∖ {∅})
bnj151.4 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj151.5 (𝜏 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜃))
bnj151.6 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
bnj151.7 (𝜑′[1𝑜 / 𝑛]𝜑)
bnj151.8 (𝜓′[1𝑜 / 𝑛]𝜓)
bnj151.9 (𝜃′[1𝑜 / 𝑛]𝜃)
bnj151.10 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
bnj151.11 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
bnj151.12 (𝜁′[1𝑜 / 𝑛]𝜁)
bnj151.13 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
bnj151.14 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj151.15 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj151.16 (𝜁″[𝐹 / 𝑓]𝜁′)
bnj151.17 (𝜁0 ↔ (𝑓 Fn 1𝑜𝜑′𝜓′))
bnj151.18 (𝜁1[𝑔 / 𝑓]𝜁0)
bnj151.19 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj151.20 (𝜓1[𝑔 / 𝑓]𝜓′)
Assertion
Ref Expression
bnj151 (𝑛 = 1𝑜 → ((𝑛𝐷𝜏) → 𝜃))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥   𝐴,𝑛,𝑓,𝑥   𝑓,𝐹,𝑖,𝑦   𝑅,𝑓,𝑔,𝑥   𝑅,𝑛   𝑓,𝜁1   𝑓,𝜁″   𝑔,𝜁0   𝑖,𝑛,𝑦   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜃(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜏(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝐴(𝑦,𝑖,𝑚)   𝐷(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑖,𝑚)   𝐹(𝑥,𝑔,𝑚,𝑛)   𝜑′(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜃′(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁′(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜑″(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜓″(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁″(𝑥,𝑦,𝑔,𝑖,𝑚,𝑛)   𝜃0(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁0(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜑1(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜓1(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜃1(𝑥,𝑦,𝑓,𝑔,𝑖,𝑚,𝑛)   𝜁1(𝑥,𝑦,𝑔,𝑖,𝑚,𝑛)

Proof of Theorem bnj151
StepHypRef Expression
1 bnj151.1 . . . . . . 7 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj151.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj151.6 . . . . . . 7 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
4 bnj151.7 . . . . . . 7 (𝜑′[1𝑜 / 𝑛]𝜑)
5 bnj151.8 . . . . . . 7 (𝜓′[1𝑜 / 𝑛]𝜓)
6 bnj151.10 . . . . . . 7 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
7 bnj151.12 . . . . . . 7 (𝜁′[1𝑜 / 𝑛]𝜁)
8 bnj151.13 . . . . . . 7 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
9 bnj151.14 . . . . . . 7 (𝜑″[𝐹 / 𝑓]𝜑′)
10 bnj151.15 . . . . . . 7 (𝜓″[𝐹 / 𝑓]𝜓′)
11 bnj151.16 . . . . . . 7 (𝜁″[𝐹 / 𝑓]𝜁′)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11bnj150 30200 . . . . . 6 𝜃0
1312, 6mpbi 219 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1𝑜𝜑′𝜓′))
14 bnj151.11 . . . . . . 7 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
15 bnj151.17 . . . . . . 7 (𝜁0 ↔ (𝑓 Fn 1𝑜𝜑′𝜓′))
16 bnj151.18 . . . . . . 7 (𝜁1[𝑔 / 𝑓]𝜁0)
17 bnj151.19 . . . . . . 7 (𝜑1[𝑔 / 𝑓]𝜑′)
18 bnj151.20 . . . . . . 7 (𝜓1[𝑔 / 𝑓]𝜓′)
191, 4bnj118 30193 . . . . . . 7 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2014, 15, 16, 17, 18, 19bnj149 30199 . . . . . 6 𝜃1
2120, 14mpbi 219 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1𝑜𝜑′𝜓′))
22 eu5 2484 . . . . 5 (∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′) ↔ (∃𝑓(𝑓 Fn 1𝑜𝜑′𝜓′) ∧ ∃*𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
2313, 21, 22sylanbrc 695 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′))
24 bnj151.4 . . . . 5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
25 bnj151.9 . . . . 5 (𝜃′[1𝑜 / 𝑛]𝜃)
2624, 4, 5, 25bnj130 30198 . . . 4 (𝜃′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
2723, 26mpbir 220 . . 3 𝜃′
28 sbceq1a 3413 . . . 4 (𝑛 = 1𝑜 → (𝜃[1𝑜 / 𝑛]𝜃))
2928, 25syl6bbr 277 . . 3 (𝑛 = 1𝑜 → (𝜃𝜃′))
3027, 29mpbiri 247 . 2 (𝑛 = 1𝑜𝜃)
3130a1d 25 1 (𝑛 = 1𝑜 → ((𝑛𝐷𝜏) → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  ∃*wmo 2459  wral 2896  [wsbc 3402  cdif 3537  c0 3874  {csn 4125  cop 4131   ciun 4455   class class class wbr 4583   E cep 4947  suc csuc 5642   Fn wfn 5799  cfv 5804  ωcom 6957  1𝑜c1o 7440   predc-bnj14 30007   FrSe w-bnj15 30011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-bnj13 30010  df-bnj15 30012
This theorem is referenced by:  bnj153  30204
  Copyright terms: Public domain W3C validator