Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1476 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1476.1 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
bnj1476.2 | ⊢ (𝜓 → 𝐷 = ∅) |
Ref | Expression |
---|---|
bnj1476 | ⊢ (𝜓 → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1476.2 | . . . 4 ⊢ (𝜓 → 𝐷 = ∅) | |
2 | bnj1476.1 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} | |
3 | nfrab1 3099 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} | |
4 | 2, 3 | nfcxfr 2749 | . . . . 5 ⊢ Ⅎ𝑥𝐷 |
5 | 4 | eq0f 3884 | . . . 4 ⊢ (𝐷 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐷) |
6 | 1, 5 | sylib 207 | . . 3 ⊢ (𝜓 → ∀𝑥 ¬ 𝑥 ∈ 𝐷) |
7 | 2 | rabeq2i 3170 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) |
8 | 7 | notbii 309 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐷 ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) |
9 | iman 439 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) | |
10 | 8, 9 | sylbb2 227 | . . . 4 ⊢ (¬ 𝑥 ∈ 𝐷 → (𝑥 ∈ 𝐴 → 𝜑)) |
11 | 10 | alimi 1730 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐷 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
12 | 6, 11 | syl 17 | . 2 ⊢ (𝜓 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
13 | 12 | bnj1142 30114 | 1 ⊢ (𝜓 → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∀wal 1473 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 ∅c0 3874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rab 2905 df-v 3175 df-dif 3543 df-nul 3875 |
This theorem is referenced by: bnj1312 30380 |
Copyright terms: Public domain | W3C validator |