Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1466 Structured version   Visualization version   GIF version

Theorem bnj1466 30375
 Description: Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1466.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1466.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1466.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1466.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1466.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1466.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1466.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1466.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1466.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1466.10 𝑃 = 𝐻
bnj1466.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1466.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
Assertion
Ref Expression
bnj1466 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
Distinct variable groups:   𝐴,𝑓,𝑤   𝑓,𝐺,𝑤   𝑤,𝐻   𝑤,𝑃   𝑅,𝑓,𝑤   𝑤,𝑍   𝑥,𝑓,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑤,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑤,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐴(𝑥,𝑦,𝑑)   𝐵(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑤,𝑓,𝑑)

Proof of Theorem bnj1466
StepHypRef Expression
1 bnj1466.12 . . 3 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1466.10 . . . . 5 𝑃 = 𝐻
3 bnj1466.9 . . . . . . . 8 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
43bnj1317 30146 . . . . . . 7 (𝑤𝐻 → ∀𝑓 𝑤𝐻)
54nfcii 2742 . . . . . 6 𝑓𝐻
65nfuni 4378 . . . . 5 𝑓 𝐻
72, 6nfcxfr 2749 . . . 4 𝑓𝑃
8 nfcv 2751 . . . . . 6 𝑓𝑥
9 nfcv 2751 . . . . . . 7 𝑓𝐺
10 bnj1466.11 . . . . . . . 8 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
11 nfcv 2751 . . . . . . . . . 10 𝑓 pred(𝑥, 𝐴, 𝑅)
127, 11nfres 5319 . . . . . . . . 9 𝑓(𝑃 ↾ pred(𝑥, 𝐴, 𝑅))
138, 12nfop 4356 . . . . . . . 8 𝑓𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1410, 13nfcxfr 2749 . . . . . . 7 𝑓𝑍
159, 14nffv 6110 . . . . . 6 𝑓(𝐺𝑍)
168, 15nfop 4356 . . . . 5 𝑓𝑥, (𝐺𝑍)⟩
1716nfsn 4189 . . . 4 𝑓{⟨𝑥, (𝐺𝑍)⟩}
187, 17nfun 3731 . . 3 𝑓(𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
191, 18nfcxfr 2749 . 2 𝑓𝑄
2019nfcrii 2744 1 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900  [wsbc 3402   ∪ cun 3538   ⊆ wss 3540  ∅c0 3874  {csn 4125  ⟨cop 4131  ∪ cuni 4372   class class class wbr 4583  dom cdm 5038   ↾ cres 5040   Fn wfn 5799  ‘cfv 5804   predc-bnj14 30007   FrSe w-bnj15 30011   trClc-bnj18 30013 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-res 5050  df-iota 5768  df-fv 5812 This theorem is referenced by:  bnj1463  30377  bnj1491  30379
 Copyright terms: Public domain W3C validator