Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1465 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1465.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
bnj1465.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
bnj1465.3 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
bnj1465 | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1465.3 | . . . 4 ⊢ (𝜒 → 𝜓) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → 𝜓) |
3 | bnj1465.2 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | bnj1465.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | bnj1464 30168 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
7 | 2, 6 | mpbird 246 | . 2 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜑) |
8 | 7 | spesbcd 3488 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 = wceq 1475 ∃wex 1695 ∈ wcel 1977 [wsbc 3402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-v 3175 df-sbc 3403 |
This theorem is referenced by: bnj1463 30377 |
Copyright terms: Public domain | W3C validator |