Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1463 Structured version   Visualization version   GIF version

Theorem bnj1463 30377
Description: Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1463.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1463.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1463.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1463.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1463.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1463.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1463.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1463.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1463.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1463.10 𝑃 = 𝐻
bnj1463.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1463.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1463.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1463.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1463.15 (𝜒𝑄 ∈ V)
bnj1463.16 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
bnj1463.17 (𝜒𝑄 Fn 𝐸)
bnj1463.18 (𝜒𝐸𝐵)
Assertion
Ref Expression
bnj1463 (𝜒𝑄𝐶)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐸,𝑑,𝑧   𝐺,𝑑,𝑓,𝑥,𝑧   𝑧,𝑄   𝑅,𝑑,𝑓,𝑥   𝑧,𝑌   𝑦,𝑑,𝑥
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑦,𝑧)   𝐸(𝑥,𝑦,𝑓)   𝐺(𝑦)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1463
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1463.18 . . . . . . 7 (𝜒𝐸𝐵)
2 elex 3185 . . . . . . 7 (𝐸𝐵𝐸 ∈ V)
31, 2syl 17 . . . . . 6 (𝜒𝐸 ∈ V)
4 eleq1 2676 . . . . . . . 8 (𝑑 = 𝐸 → (𝑑𝐵𝐸𝐵))
5 fneq2 5894 . . . . . . . . 9 (𝑑 = 𝐸 → (𝑄 Fn 𝑑𝑄 Fn 𝐸))
6 raleq 3115 . . . . . . . . 9 (𝑑 = 𝐸 → (∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊) ↔ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊)))
75, 6anbi12d 743 . . . . . . . 8 (𝑑 = 𝐸 → ((𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)) ↔ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))))
84, 7anbi12d 743 . . . . . . 7 (𝑑 = 𝐸 → ((𝑑𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))) ↔ (𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊)))))
9 bnj1463.1 . . . . . . . . . . . 12 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
109bnj1317 30146 . . . . . . . . . . 11 (𝑤𝐵 → ∀𝑑 𝑤𝐵)
1110nfcii 2742 . . . . . . . . . 10 𝑑𝐵
1211nfel2 2767 . . . . . . . . 9 𝑑 𝐸𝐵
13 bnj1463.2 . . . . . . . . . . . . 13 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
14 bnj1463.3 . . . . . . . . . . . . 13 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
15 bnj1463.4 . . . . . . . . . . . . 13 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
16 bnj1463.5 . . . . . . . . . . . . 13 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
17 bnj1463.6 . . . . . . . . . . . . 13 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
18 bnj1463.7 . . . . . . . . . . . . 13 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
19 bnj1463.8 . . . . . . . . . . . . 13 (𝜏′[𝑦 / 𝑥]𝜏)
20 bnj1463.9 . . . . . . . . . . . . 13 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
21 bnj1463.10 . . . . . . . . . . . . 13 𝑃 = 𝐻
22 bnj1463.11 . . . . . . . . . . . . 13 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
23 bnj1463.12 . . . . . . . . . . . . 13 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
249, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23bnj1467 30376 . . . . . . . . . . . 12 (𝑤𝑄 → ∀𝑑 𝑤𝑄)
2524nfcii 2742 . . . . . . . . . . 11 𝑑𝑄
26 nfcv 2751 . . . . . . . . . . 11 𝑑𝐸
2725, 26nffn 5901 . . . . . . . . . 10 𝑑 𝑄 Fn 𝐸
28 bnj1463.13 . . . . . . . . . . . . 13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
299, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28bnj1446 30367 . . . . . . . . . . . 12 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑑(𝑄𝑧) = (𝐺𝑊))
3029nf5i 2011 . . . . . . . . . . 11 𝑑(𝑄𝑧) = (𝐺𝑊)
3126, 30nfral 2929 . . . . . . . . . 10 𝑑𝑧𝐸 (𝑄𝑧) = (𝐺𝑊)
3227, 31nfan 1816 . . . . . . . . 9 𝑑(𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
3312, 32nfan 1816 . . . . . . . 8 𝑑(𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊)))
3433nf5ri 2053 . . . . . . 7 ((𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))) → ∀𝑑(𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))))
35 bnj1463.17 . . . . . . . 8 (𝜒𝑄 Fn 𝐸)
36 bnj1463.16 . . . . . . . 8 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
371, 35, 36jca32 556 . . . . . . 7 (𝜒 → (𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))))
388, 34, 37bnj1465 30169 . . . . . 6 ((𝜒𝐸 ∈ V) → ∃𝑑(𝑑𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
393, 38mpdan 699 . . . . 5 (𝜒 → ∃𝑑(𝑑𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
40 df-rex 2902 . . . . 5 (∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)) ↔ ∃𝑑(𝑑𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
4139, 40sylibr 223 . . . 4 (𝜒 → ∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)))
42 bnj1463.15 . . . . 5 (𝜒𝑄 ∈ V)
43 nfcv 2751 . . . . . . . 8 𝑓𝐵
449, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23bnj1466 30375 . . . . . . . . . . 11 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
4544nfcii 2742 . . . . . . . . . 10 𝑓𝑄
46 nfcv 2751 . . . . . . . . . 10 𝑓𝑑
4745, 46nffn 5901 . . . . . . . . 9 𝑓 𝑄 Fn 𝑑
489, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28bnj1448 30369 . . . . . . . . . . 11 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑓(𝑄𝑧) = (𝐺𝑊))
4948nf5i 2011 . . . . . . . . . 10 𝑓(𝑄𝑧) = (𝐺𝑊)
5046, 49nfral 2929 . . . . . . . . 9 𝑓𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)
5147, 50nfan 1816 . . . . . . . 8 𝑓(𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))
5243, 51nfrex 2990 . . . . . . 7 𝑓𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))
5352nf5ri 2053 . . . . . 6 (∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)) → ∀𝑓𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)))
5425nfeq2 2766 . . . . . . 7 𝑑 𝑓 = 𝑄
55 fneq1 5893 . . . . . . . 8 (𝑓 = 𝑄 → (𝑓 Fn 𝑑𝑄 Fn 𝑑))
56 fveq1 6102 . . . . . . . . . 10 (𝑓 = 𝑄 → (𝑓𝑧) = (𝑄𝑧))
57 reseq1 5311 . . . . . . . . . . . . 13 (𝑓 = 𝑄 → (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)))
5857opeq2d 4347 . . . . . . . . . . . 12 (𝑓 = 𝑄 → ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
5958, 28syl6eqr 2662 . . . . . . . . . . 11 (𝑓 = 𝑄 → ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = 𝑊)
6059fveq2d 6107 . . . . . . . . . 10 (𝑓 = 𝑄 → (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩) = (𝐺𝑊))
6156, 60eqeq12d 2625 . . . . . . . . 9 (𝑓 = 𝑄 → ((𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩) ↔ (𝑄𝑧) = (𝐺𝑊)))
6261ralbidv 2969 . . . . . . . 8 (𝑓 = 𝑄 → (∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩) ↔ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)))
6355, 62anbi12d 743 . . . . . . 7 (𝑓 = 𝑄 → ((𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)) ↔ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
6454, 63rexbid 3033 . . . . . 6 (𝑓 = 𝑄 → (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
6553, 64, 44bnj1468 30170 . . . . 5 (𝑄 ∈ V → ([𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
6642, 65syl 17 . . . 4 (𝜒 → ([𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
6741, 66mpbird 246 . . 3 (𝜒[𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
68 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
69 id 22 . . . . . . . . . . 11 (𝑥 = 𝑧𝑥 = 𝑧)
70 bnj602 30239 . . . . . . . . . . . 12 (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
7170reseq2d 5317 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)))
7269, 71opeq12d 4348 . . . . . . . . . 10 (𝑥 = 𝑧 → ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
7313, 72syl5eq 2656 . . . . . . . . 9 (𝑥 = 𝑧𝑌 = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
7473fveq2d 6107 . . . . . . . 8 (𝑥 = 𝑧 → (𝐺𝑌) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩))
7568, 74eqeq12d 2625 . . . . . . 7 (𝑥 = 𝑧 → ((𝑓𝑥) = (𝐺𝑌) ↔ (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
7675cbvralv 3147 . . . . . 6 (∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌) ↔ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩))
7776anbi2i 726 . . . . 5 ((𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
7877rexbii 3023 . . . 4 (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
7978sbcbii 3458 . . 3 ([𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ [𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
8067, 79sylibr 223 . 2 (𝜒[𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
8114bnj1454 30166 . . 3 (𝑄 ∈ V → (𝑄𝐶[𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
8242, 81syl 17 . 2 (𝜒 → (𝑄𝐶[𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
8380, 82mpbird 246 1 (𝜒𝑄𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  [wsbc 3402  cun 3538  wss 3540  c0 3874  {csn 4125  cop 4131   cuni 4372   class class class wbr 4583  dom cdm 5038  cres 5040   Fn wfn 5799  cfv 5804   predc-bnj14 30007   FrSe w-bnj15 30011   trClc-bnj18 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-bnj14 30008
This theorem is referenced by:  bnj1312  30380
  Copyright terms: Public domain W3C validator