Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1386 Structured version   Visualization version   GIF version

Theorem bnj1386 30158
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1386.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1386.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1386.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1386.4 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
Assertion
Ref Expression
bnj1386 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑔,𝑥   𝑓,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝜓(𝑥,𝑓,𝑔)   𝐴(𝑓)   𝐷(𝑥,𝑓,𝑔)

Proof of Theorem bnj1386
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bnj1386.1 . 2 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
2 bnj1386.2 . 2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
3 bnj1386.3 . 2 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
4 bnj1386.4 . 2 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
5 biid 250 . 2 (∀𝐴 Fun ↔ ∀𝐴 Fun )
6 eqid 2610 . 2 (dom ∩ dom 𝑔) = (dom ∩ dom 𝑔)
7 biid 250 . 2 ((∀𝐴 Fun ∧ ∀𝐴𝑔𝐴 ( ↾ (dom ∩ dom 𝑔)) = (𝑔 ↾ (dom ∩ dom 𝑔))) ↔ (∀𝐴 Fun ∧ ∀𝐴𝑔𝐴 ( ↾ (dom ∩ dom 𝑔)) = (𝑔 ↾ (dom ∩ dom 𝑔))))
81, 2, 3, 4, 5, 6, 7bnj1385 30157 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  cin 3539   cuni 4372  dom cdm 5038  cres 5040  Fun wfun 5798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812
This theorem is referenced by:  bnj1384  30354
  Copyright terms: Public domain W3C validator