Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1265 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1265.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
bnj1265 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1265.1 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | 1 | bnj1196 30119 | . . 3 ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | bnj1266 30136 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) |
4 | 3 | bnj937 30096 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-rex 2902 |
This theorem is referenced by: bnj1253 30339 bnj1280 30342 bnj1296 30343 bnj1371 30351 bnj1497 30382 |
Copyright terms: Public domain | W3C validator |