Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1245 Structured version   Visualization version   GIF version

Theorem bnj1245 30336
 Description: Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1245.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1245.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1245.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1245.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1245.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1245.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1245.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
bnj1245.8 𝑍 = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1245.9 𝐾 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑍))}
Assertion
Ref Expression
bnj1245 (𝜑 → dom 𝐴)
Distinct variable groups:   𝐴,𝑑   𝐵,𝑓,   𝑓,𝐺,   ,𝑌   𝑓,𝑍   𝑓,𝑑,   𝑥,𝑓,
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑓,𝑔,)   𝐵(𝑥,𝑦,𝑔,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝑅(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦,𝑔,𝑑)   𝐾(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑔,𝑑)   𝑍(𝑥,𝑦,𝑔,,𝑑)

Proof of Theorem bnj1245
StepHypRef Expression
1 bnj1245.6 . . . 4 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
21bnj1247 30133 . . 3 (𝜑𝐶)
3 bnj1245.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4 bnj1245.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
5 bnj1245.8 . . . 4 𝑍 = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
6 bnj1245.9 . . . 4 𝐾 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑍))}
73, 4, 5, 6bnj1234 30335 . . 3 𝐶 = 𝐾
82, 7syl6eleq 2698 . 2 (𝜑𝐾)
96abeq2i 2722 . . . . . 6 (𝐾 ↔ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑍)))
109bnj1238 30131 . . . . 5 (𝐾 → ∃𝑑𝐵 Fn 𝑑)
1110bnj1196 30119 . . . 4 (𝐾 → ∃𝑑(𝑑𝐵 Fn 𝑑))
12 bnj1245.1 . . . . . . 7 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
1312abeq2i 2722 . . . . . 6 (𝑑𝐵 ↔ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1413simplbi 475 . . . . 5 (𝑑𝐵𝑑𝐴)
15 fndm 5904 . . . . 5 ( Fn 𝑑 → dom = 𝑑)
1614, 15bnj1241 30132 . . . 4 ((𝑑𝐵 Fn 𝑑) → dom 𝐴)
1711, 16bnj593 30069 . . 3 (𝐾 → ∃𝑑dom 𝐴)
1817bnj937 30096 . 2 (𝐾 → dom 𝐴)
198, 18syl 17 1 (𝜑 → dom 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900   ∩ cin 3539   ⊆ wss 3540  ⟨cop 4131   class class class wbr 4583  dom cdm 5038   ↾ cres 5040   Fn wfn 5799  ‘cfv 5804   ∧ w-bnj17 30005   predc-bnj14 30007   FrSe w-bnj15 30011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-bnj17 30006 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator