Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1211 Structured version   Visualization version   GIF version

Theorem bnj1211 30122
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1211.1 (𝜑 → ∀𝑥𝐴 𝜓)
Assertion
Ref Expression
bnj1211 (𝜑 → ∀𝑥(𝑥𝐴𝜓))

Proof of Theorem bnj1211
StepHypRef Expression
1 bnj1211.1 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
2 df-ral 2901 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
31, 2sylib 207 1 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wcel 1977  wral 2896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-ral 2901
This theorem is referenced by:  bnj1533  30176  bnj1204  30334  bnj1523  30393
  Copyright terms: Public domain W3C validator