Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1211 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1211.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
bnj1211 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1211.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
2 | df-ral 2901 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | sylib 207 | 1 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ∈ wcel 1977 ∀wral 2896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-ral 2901 |
This theorem is referenced by: bnj1533 30176 bnj1204 30334 bnj1523 30393 |
Copyright terms: Public domain | W3C validator |