Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj118 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj118.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj118.2 | ⊢ (𝜑′ ↔ [1𝑜 / 𝑛]𝜑) |
Ref | Expression |
---|---|
bnj118 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj118.2 | . 2 ⊢ (𝜑′ ↔ [1𝑜 / 𝑛]𝜑) | |
2 | bnj118.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
3 | bnj105 30044 | . . 3 ⊢ 1𝑜 ∈ V | |
4 | 2, 3 | bnj91 30185 | . 2 ⊢ ([1𝑜 / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
5 | 1, 4 | bitri 263 | 1 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 = wceq 1475 [wsbc 3402 ∅c0 3874 ‘cfv 5804 1𝑜c1o 7440 predc-bnj14 30007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-pw 4110 df-sn 4126 df-suc 5646 df-1o 7447 |
This theorem is referenced by: bnj151 30201 bnj153 30204 |
Copyright terms: Public domain | W3C validator |