Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1143 Structured version   Visualization version   GIF version

Theorem bnj1143 30115
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1143 𝑥𝐴 𝐵𝐵
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem bnj1143
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4457 . . . 4 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
2 notnotb 303 . . . . . . . 8 (𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅)
3 neq0 3889 . . . . . . . 8 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
42, 3xchbinx 323 . . . . . . 7 (𝐴 = ∅ ↔ ¬ ∃𝑥 𝑥𝐴)
5 df-rex 2902 . . . . . . . . 9 (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑥(𝑥𝐴𝑧𝐵))
6 exsimpl 1783 . . . . . . . . 9 (∃𝑥(𝑥𝐴𝑧𝐵) → ∃𝑥 𝑥𝐴)
75, 6sylbi 206 . . . . . . . 8 (∃𝑥𝐴 𝑧𝐵 → ∃𝑥 𝑥𝐴)
87con3i 149 . . . . . . 7 (¬ ∃𝑥 𝑥𝐴 → ¬ ∃𝑥𝐴 𝑧𝐵)
94, 8sylbi 206 . . . . . 6 (𝐴 = ∅ → ¬ ∃𝑥𝐴 𝑧𝐵)
109alrimiv 1842 . . . . 5 (𝐴 = ∅ → ∀𝑧 ¬ ∃𝑥𝐴 𝑧𝐵)
11 notnotb 303 . . . . . . 7 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} = ∅ ↔ ¬ ¬ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} = ∅)
12 neq0 3889 . . . . . . . 8 𝑥𝐴 𝐵 = ∅ ↔ ∃𝑧 𝑧 𝑥𝐴 𝐵)
131eqeq1i 2615 . . . . . . . . 9 ( 𝑥𝐴 𝐵 = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} = ∅)
1413notbii 309 . . . . . . . 8 𝑥𝐴 𝐵 = ∅ ↔ ¬ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} = ∅)
15 df-iun 4457 . . . . . . . . . 10 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
1615eleq2i 2680 . . . . . . . . 9 (𝑧 𝑥𝐴 𝐵𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
1716exbii 1764 . . . . . . . 8 (∃𝑧 𝑧 𝑥𝐴 𝐵 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
1812, 14, 173bitr3i 289 . . . . . . 7 (¬ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} = ∅ ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
1911, 18xchbinx 323 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} = ∅ ↔ ¬ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
20 alnex 1697 . . . . . 6 (∀𝑧 ¬ 𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ ¬ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
21 abid 2598 . . . . . . . 8 (𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ ∃𝑥𝐴 𝑧𝐵)
2221notbii 309 . . . . . . 7 𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ ¬ ∃𝑥𝐴 𝑧𝐵)
2322albii 1737 . . . . . 6 (∀𝑧 ¬ 𝑧 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ ∀𝑧 ¬ ∃𝑥𝐴 𝑧𝐵)
2419, 20, 233bitr2i 287 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} = ∅ ↔ ∀𝑧 ¬ ∃𝑥𝐴 𝑧𝐵)
2510, 24sylibr 223 . . . 4 (𝐴 = ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} = ∅)
261, 25syl5eq 2656 . . 3 (𝐴 = ∅ → 𝑥𝐴 𝐵 = ∅)
27 0ss 3924 . . 3 ∅ ⊆ 𝐵
2826, 27syl6eqss 3618 . 2 (𝐴 = ∅ → 𝑥𝐴 𝐵𝐵)
29 iunconst 4465 . . 3 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
30 eqimss 3620 . . 3 ( 𝑥𝐴 𝐵 = 𝐵 𝑥𝐴 𝐵𝐵)
3129, 30syl 17 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵𝐵)
3228, 31pm2.61ine 2865 1 𝑥𝐴 𝐵𝐵
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874  ∪ ciun 4455 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-iun 4457 This theorem is referenced by:  bnj1146  30116  bnj1145  30315  bnj1136  30319
 Copyright terms: Public domain W3C validator