Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1133 Structured version   Visualization version   GIF version

Theorem bnj1133 30311
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1133.3 𝐷 = (ω ∖ {∅})
bnj1133.5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1133.7 (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))
bnj1133.8 ((𝑖𝑛𝜏) → 𝜃)
Assertion
Ref Expression
bnj1133 (𝜒 → ∀𝑖𝑛 𝜃)
Distinct variable groups:   𝑖,𝑗,𝑛   𝜃,𝑗
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛)   𝜓(𝑓,𝑖,𝑗,𝑛)   𝜒(𝑓,𝑖,𝑗,𝑛)   𝜃(𝑓,𝑖,𝑛)   𝜏(𝑓,𝑖,𝑗,𝑛)   𝐷(𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1133
StepHypRef Expression
1 bnj1133.5 . . 3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj1133.3 . . . 4 𝐷 = (ω ∖ {∅})
32bnj1071 30299 . . 3 (𝑛𝐷 → E Fr 𝑛)
41, 3bnj769 30086 . 2 (𝜒 → E Fr 𝑛)
5 impexp 461 . . . . . 6 (((𝑖𝑛𝜏) → 𝜃) ↔ (𝑖𝑛 → (𝜏𝜃)))
65bicomi 213 . . . . 5 ((𝑖𝑛 → (𝜏𝜃)) ↔ ((𝑖𝑛𝜏) → 𝜃))
76albii 1737 . . . 4 (∀𝑖(𝑖𝑛 → (𝜏𝜃)) ↔ ∀𝑖((𝑖𝑛𝜏) → 𝜃))
8 bnj1133.8 . . . 4 ((𝑖𝑛𝜏) → 𝜃)
97, 8mpgbir 1717 . . 3 𝑖(𝑖𝑛 → (𝜏𝜃))
10 df-ral 2901 . . 3 (∀𝑖𝑛 (𝜏𝜃) ↔ ∀𝑖(𝑖𝑛 → (𝜏𝜃)))
119, 10mpbir 220 . 2 𝑖𝑛 (𝜏𝜃)
12 vex 3176 . . 3 𝑛 ∈ V
13 bnj1133.7 . . 3 (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))
1412, 13bnj110 30182 . 2 (( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜏𝜃)) → ∀𝑖𝑛 𝜃)
154, 11, 14sylancl 693 1 (𝜒 → ∀𝑖𝑛 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  [wsbc 3402  cdif 3537  c0 3874  {csn 4125   class class class wbr 4583   E cep 4947   Fr wfr 4994   Fn wfn 5799  ωcom 6957  w-bnj17 30005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-om 6958  df-bnj17 30006
This theorem is referenced by:  bnj1128  30312
  Copyright terms: Public domain W3C validator