Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1133 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1133.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1133.5 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1133.7 | ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) |
bnj1133.8 | ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) |
Ref | Expression |
---|---|
bnj1133 | ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1133.5 | . . 3 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
2 | bnj1133.3 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 2 | bnj1071 30299 | . . 3 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
4 | 1, 3 | bnj769 30086 | . 2 ⊢ (𝜒 → E Fr 𝑛) |
5 | impexp 461 | . . . . . 6 ⊢ (((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) ↔ (𝑖 ∈ 𝑛 → (𝜏 → 𝜃))) | |
6 | 5 | bicomi 213 | . . . . 5 ⊢ ((𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃)) |
7 | 6 | albii 1737 | . . . 4 ⊢ (∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) ↔ ∀𝑖((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃)) |
8 | bnj1133.8 | . . . 4 ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) | |
9 | 7, 8 | mpgbir 1717 | . . 3 ⊢ ∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) |
10 | df-ral 2901 | . . 3 ⊢ (∀𝑖 ∈ 𝑛 (𝜏 → 𝜃) ↔ ∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃))) | |
11 | 9, 10 | mpbir 220 | . 2 ⊢ ∀𝑖 ∈ 𝑛 (𝜏 → 𝜃) |
12 | vex 3176 | . . 3 ⊢ 𝑛 ∈ V | |
13 | bnj1133.7 | . . 3 ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) | |
14 | 12, 13 | bnj110 30182 | . 2 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜏 → 𝜃)) → ∀𝑖 ∈ 𝑛 𝜃) |
15 | 4, 11, 14 | sylancl 693 | 1 ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 = wceq 1475 ∈ wcel 1977 ∀wral 2896 [wsbc 3402 ∖ cdif 3537 ∅c0 3874 {csn 4125 class class class wbr 4583 E cep 4947 Fr wfr 4994 Fn wfn 5799 ωcom 6957 ∧ w-bnj17 30005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-om 6958 df-bnj17 30006 |
This theorem is referenced by: bnj1128 30312 |
Copyright terms: Public domain | W3C validator |