Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1131 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1131.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
bnj1131.2 | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
bnj1131 | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1131.2 | . 2 ⊢ ∃𝑥𝜑 | |
2 | bnj1131.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 2 | 19.9h 2106 | . 2 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
4 | 1, 3 | mpbi 219 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-ex 1696 df-nf 1701 |
This theorem is referenced by: bnj1468 30170 bnj1014 30284 bnj1128 30312 |
Copyright terms: Public domain | W3C validator |