Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1001 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1001.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1001.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj1001.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
bnj1001.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1001.27 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
Ref | Expression |
---|---|
bnj1001 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1001.27 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) | |
2 | bnj1001.6 | . . . . 5 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
3 | 2 | simplbi 475 | . . . 4 ⊢ (𝜂 → 𝑖 ∈ 𝑛) |
4 | 3 | bnj708 30080 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ 𝑛) |
5 | bnj1001.3 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
6 | 5 | bnj1232 30128 | . . . . 5 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
7 | 6 | bnj706 30078 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑛 ∈ 𝐷) |
8 | bnj1001.13 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
9 | 8 | bnj923 30092 | . . . 4 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑛 ∈ ω) |
11 | elnn 6967 | . . 3 ⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) | |
12 | 4, 10, 11 | syl2anc 691 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ ω) |
13 | bnj1001.5 | . . . . . 6 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
14 | 13 | simp3bi 1071 | . . . . 5 ⊢ (𝜏 → 𝑝 = suc 𝑛) |
15 | 14 | bnj707 30079 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑝 = suc 𝑛) |
16 | nnord 6965 | . . . . . . 7 ⊢ (𝑛 ∈ ω → Ord 𝑛) | |
17 | ordsucelsuc 6914 | . . . . . . 7 ⊢ (Ord 𝑛 → (𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛)) | |
18 | 9, 16, 17 | 3syl 18 | . . . . . 6 ⊢ (𝑛 ∈ 𝐷 → (𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛)) |
19 | 18 | biimpa 500 | . . . . 5 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → suc 𝑖 ∈ suc 𝑛) |
20 | eleq2 2677 | . . . . 5 ⊢ (𝑝 = suc 𝑛 → (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) | |
21 | 19, 20 | anim12i 588 | . . . 4 ⊢ (((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛))) |
22 | 7, 4, 15, 21 | syl21anc 1317 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛))) |
23 | bianir 1001 | . . 3 ⊢ ((suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) → suc 𝑖 ∈ 𝑝) | |
24 | 22, 23 | syl 17 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → suc 𝑖 ∈ 𝑝) |
25 | 1, 12, 24 | 3jca 1235 | 1 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∖ cdif 3537 ∅c0 3874 {csn 4125 Ord word 5639 suc csuc 5642 Fn wfn 5799 ‘cfv 5804 ωcom 6957 ∧ w-bnj17 30005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-om 6958 df-bnj17 30006 |
This theorem is referenced by: bnj1020 30287 |
Copyright terms: Public domain | W3C validator |