Step | Hyp | Ref
| Expression |
1 | | blocni.u |
. . . 4
⊢ 𝑈 ∈ NrmCVec |
2 | | eqid 2610 |
. . . . 5
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
3 | | eqid 2610 |
. . . . 5
⊢
(0vec‘𝑈) = (0vec‘𝑈) |
4 | 2, 3 | nvzcl 26873 |
. . . 4
⊢ (𝑈 ∈ NrmCVec →
(0vec‘𝑈)
∈ (BaseSet‘𝑈)) |
5 | 1, 4 | ax-mp 5 |
. . 3
⊢
(0vec‘𝑈) ∈ (BaseSet‘𝑈) |
6 | | blocni.8 |
. . . . . . . . . 10
⊢ 𝐶 = (IndMet‘𝑈) |
7 | 2, 6 | imsmet 26930 |
. . . . . . . . 9
⊢ (𝑈 ∈ NrmCVec → 𝐶 ∈
(Met‘(BaseSet‘𝑈))) |
8 | 1, 7 | ax-mp 5 |
. . . . . . . 8
⊢ 𝐶 ∈
(Met‘(BaseSet‘𝑈)) |
9 | | metxmet 21949 |
. . . . . . . 8
⊢ (𝐶 ∈
(Met‘(BaseSet‘𝑈)) → 𝐶 ∈
(∞Met‘(BaseSet‘𝑈))) |
10 | 8, 9 | ax-mp 5 |
. . . . . . 7
⊢ 𝐶 ∈
(∞Met‘(BaseSet‘𝑈)) |
11 | | blocni.j |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘𝐶) |
12 | 11 | mopntopon 22054 |
. . . . . . 7
⊢ (𝐶 ∈
(∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))) |
13 | 10, 12 | ax-mp 5 |
. . . . . 6
⊢ 𝐽 ∈
(TopOn‘(BaseSet‘𝑈)) |
14 | 13 | toponunii 20547 |
. . . . 5
⊢
(BaseSet‘𝑈) =
∪ 𝐽 |
15 | 14 | cncnpi 20892 |
. . . 4
⊢ ((𝑇 ∈ (𝐽 Cn 𝐾) ∧ (0vec‘𝑈) ∈ (BaseSet‘𝑈)) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec‘𝑈))) |
16 | 5, 15 | mpan2 703 |
. . 3
⊢ (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec‘𝑈))) |
17 | | blocni.d |
. . . 4
⊢ 𝐷 = (IndMet‘𝑊) |
18 | | blocni.k |
. . . 4
⊢ 𝐾 = (MetOpen‘𝐷) |
19 | | blocni.4 |
. . . 4
⊢ 𝐿 = (𝑈 LnOp 𝑊) |
20 | | blocni.5 |
. . . 4
⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
21 | | blocni.w |
. . . 4
⊢ 𝑊 ∈ NrmCVec |
22 | | blocni.l |
. . . 4
⊢ 𝑇 ∈ 𝐿 |
23 | 6, 17, 11, 18, 19, 20, 1, 21, 22, 2 | blocnilem 27043 |
. . 3
⊢
(((0vec‘𝑈) ∈ (BaseSet‘𝑈) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec‘𝑈))) → 𝑇 ∈ 𝐵) |
24 | 5, 16, 23 | sylancr 694 |
. 2
⊢ (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇 ∈ 𝐵) |
25 | | eleq1 2676 |
. . 3
⊢ (𝑇 = (𝑈 0op 𝑊) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾))) |
26 | | simprr 792 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑦 ∈
ℝ+) |
27 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
28 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢ (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊) |
29 | 2, 27, 28, 20 | nmblore 27025 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ) |
30 | 1, 21, 29 | mp3an12 1406 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ) |
31 | | eqid 2610 |
. . . . . . . . . . . . . 14
⊢ (𝑈 0op 𝑊) = (𝑈 0op 𝑊) |
32 | 28, 31, 19 | nmlnogt0 27036 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) |
33 | 1, 21, 22, 32 | mp3an 1416 |
. . . . . . . . . . . 12
⊢ (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)) |
34 | 33 | biimpi 205 |
. . . . . . . . . . 11
⊢ (𝑇 ≠ (𝑈 0op 𝑊) → 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)) |
35 | 30, 34 | anim12i 588 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) |
36 | | elrp 11710 |
. . . . . . . . . 10
⊢ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+ ↔ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) |
37 | 35, 36 | sylibr 223 |
. . . . . . . . 9
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈
ℝ+) |
38 | 37 | adantr 480 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈
ℝ+) |
39 | 26, 38 | rpdivcld 11765 |
. . . . . . 7
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈
ℝ+) |
40 | | simprl 790 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑥 ∈ (BaseSet‘𝑈)) |
41 | | metcl 21947 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈
(Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ) |
42 | 8, 41 | mp3an1 1403 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ) |
43 | 40, 42 | sylan 487 |
. . . . . . . . . 10
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ) |
44 | | simplrr 797 |
. . . . . . . . . . 11
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ+) |
45 | 44 | rpred 11748 |
. . . . . . . . . 10
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ) |
46 | 35 | ad2antrr 758 |
. . . . . . . . . 10
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) |
47 | | ltmuldiv2 10776 |
. . . . . . . . . 10
⊢ (((𝑥𝐶𝑤) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)))) |
48 | 43, 45, 46, 47 | syl3anc 1318 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)))) |
49 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑇 ∈ 𝐵 ∧ 𝑥 ∈ (BaseSet‘𝑈))) |
50 | 49 | ad2ant2r 779 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑇 ∈ 𝐵 ∧ 𝑥 ∈ (BaseSet‘𝑈))) |
51 | 2, 27, 6, 17, 28, 20, 1, 21 | blometi 27042 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤))) |
52 | 51 | 3expa 1257 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤))) |
53 | 50, 52 | sylan 487 |
. . . . . . . . . 10
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤))) |
54 | 2, 27, 19 | lnof 26994 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) |
55 | 1, 21, 22, 54 | mp3an 1416 |
. . . . . . . . . . . . . 14
⊢ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) |
56 | 55 | ffvelrni 6266 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (BaseSet‘𝑈) → (𝑇‘𝑥) ∈ (BaseSet‘𝑊)) |
57 | 55 | ffvelrni 6266 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (BaseSet‘𝑈) → (𝑇‘𝑤) ∈ (BaseSet‘𝑊)) |
58 | 27, 17 | imsmet 26930 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ NrmCVec → 𝐷 ∈
(Met‘(BaseSet‘𝑊))) |
59 | 21, 58 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ 𝐷 ∈
(Met‘(BaseSet‘𝑊)) |
60 | | metcl 21947 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈
(Met‘(BaseSet‘𝑊)) ∧ (𝑇‘𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇‘𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ∈ ℝ) |
61 | 59, 60 | mp3an1 1403 |
. . . . . . . . . . . . 13
⊢ (((𝑇‘𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇‘𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ∈ ℝ) |
62 | 56, 57, 61 | syl2an 493 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ∈ ℝ) |
63 | 40, 62 | sylan 487 |
. . . . . . . . . . 11
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ∈ ℝ) |
64 | | remulcl 9900 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ) |
65 | 30, 42, 64 | syl2an 493 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ 𝐵 ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ) |
66 | 65 | anassrs 678 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ) |
67 | 66 | adantllr 751 |
. . . . . . . . . . . 12
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ) |
68 | 67 | adantlrr 753 |
. . . . . . . . . . 11
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ) |
69 | | lelttr 10007 |
. . . . . . . . . . 11
⊢ ((((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) |
70 | 63, 68, 45, 69 | syl3anc 1318 |
. . . . . . . . . 10
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑇‘𝑥)𝐷(𝑇‘𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) |
71 | 53, 70 | mpand 707 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) |
72 | 48, 71 | sylbird 249 |
. . . . . . . 8
⊢ ((((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) |
73 | 72 | ralrimiva 2949 |
. . . . . . 7
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) →
∀𝑤 ∈
(BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) |
74 | | breq2 4587 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)))) |
75 | 74 | imbi1d 330 |
. . . . . . . . 9
⊢ (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦) ↔ ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦))) |
76 | 75 | ralbidv 2969 |
. . . . . . . 8
⊢ (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → (∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦))) |
77 | 76 | rspcev 3282 |
. . . . . . 7
⊢ (((𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+ ∧
∀𝑤 ∈
(BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) |
78 | 39, 73, 77 | syl2anc 691 |
. . . . . 6
⊢ (((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) →
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) |
79 | 78 | ralrimivva 2954 |
. . . . 5
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈
(BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)) |
80 | 79, 55 | jctil 558 |
. . . 4
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) → (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈
(BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦))) |
81 | | metxmet 21949 |
. . . . . 6
⊢ (𝐷 ∈
(Met‘(BaseSet‘𝑊)) → 𝐷 ∈
(∞Met‘(BaseSet‘𝑊))) |
82 | 59, 81 | ax-mp 5 |
. . . . 5
⊢ 𝐷 ∈
(∞Met‘(BaseSet‘𝑊)) |
83 | 11, 18 | metcn 22158 |
. . . . 5
⊢ ((𝐶 ∈
(∞Met‘(BaseSet‘𝑈)) ∧ 𝐷 ∈
(∞Met‘(BaseSet‘𝑊))) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈
(BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦)))) |
84 | 10, 82, 83 | mp2an 704 |
. . . 4
⊢ (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈
(BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇‘𝑥)𝐷(𝑇‘𝑤)) < 𝑦))) |
85 | 80, 84 | sylibr 223 |
. . 3
⊢ ((𝑇 ∈ 𝐵 ∧ 𝑇 ≠ (𝑈 0op 𝑊)) → 𝑇 ∈ (𝐽 Cn 𝐾)) |
86 | | eqid 2610 |
. . . . . . 7
⊢
(0vec‘𝑊) = (0vec‘𝑊) |
87 | 2, 86, 31 | 0ofval 27026 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = ((BaseSet‘𝑈) ×
{(0vec‘𝑊)})) |
88 | 1, 21, 87 | mp2an 704 |
. . . . 5
⊢ (𝑈 0op 𝑊) = ((BaseSet‘𝑈) ×
{(0vec‘𝑊)}) |
89 | 18 | mopntopon 22054 |
. . . . . . 7
⊢ (𝐷 ∈
(∞Met‘(BaseSet‘𝑊)) → 𝐾 ∈ (TopOn‘(BaseSet‘𝑊))) |
90 | 82, 89 | ax-mp 5 |
. . . . . 6
⊢ 𝐾 ∈
(TopOn‘(BaseSet‘𝑊)) |
91 | 27, 86 | nvzcl 26873 |
. . . . . . 7
⊢ (𝑊 ∈ NrmCVec →
(0vec‘𝑊)
∈ (BaseSet‘𝑊)) |
92 | 21, 91 | ax-mp 5 |
. . . . . 6
⊢
(0vec‘𝑊) ∈ (BaseSet‘𝑊) |
93 | | cnconst2 20897 |
. . . . . 6
⊢ ((𝐽 ∈
(TopOn‘(BaseSet‘𝑈)) ∧ 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)) ∧
(0vec‘𝑊)
∈ (BaseSet‘𝑊))
→ ((BaseSet‘𝑈)
× {(0vec‘𝑊)}) ∈ (𝐽 Cn 𝐾)) |
94 | 13, 90, 92, 93 | mp3an 1416 |
. . . . 5
⊢
((BaseSet‘𝑈)
× {(0vec‘𝑊)}) ∈ (𝐽 Cn 𝐾) |
95 | 88, 94 | eqeltri 2684 |
. . . 4
⊢ (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾) |
96 | 95 | a1i 11 |
. . 3
⊢ (𝑇 ∈ 𝐵 → (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)) |
97 | 25, 85, 96 | pm2.61ne 2867 |
. 2
⊢ (𝑇 ∈ 𝐵 → 𝑇 ∈ (𝐽 Cn 𝐾)) |
98 | 24, 97 | impbii 198 |
1
⊢ (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵) |